Skip to main content
Log in

Actively Reduced Airfoil Drag by Transversal Surface Waves

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The flow over a DRA2303 wing section at a Reynolds number of Re = 400,000 is actively controlled by spanwise traveling transversal surface waves. The actuated low-Mach number flow is investigated by a high-resolution large-eddy simulation. Approximately 74% of the solid surface on both sides of the wing section is deflected by a sinusoidal space- and time-dependent function in the wall-normal direction. The turbulence intensitites and wall-normal vorticity fluctuations are significantly reduced and a shift from one-dimensional turbulence to two-dimensional turbulence is observed. Besides a viscous drag reduction by 8.6% with a strong decrease of skin-friction in the favorable pressure gradient region and an overall drag decrease by 7.5%, a slight increase in lift is achieved for an external flow over a realistic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Walsh, M., Weinstein, L.: Drag and heat transfer on surfaces with small longitudinal fins. In: 11Th Fluid and Plasma Dynamics Conference, p. 1161 (1978)

  2. Bechert, D.W., Hoppe, G., Reif, W.E.: On the drag reduction of the shark skin. AIAA Paper No., 85–0546 (1985)

  3. Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36(1), 173–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. García-Mayoral, R., Jiménez, J.: Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)

    Article  MATH  Google Scholar 

  5. Szodruch, J.: Viscous drag reduction on transport aircraft. AIAA Paper No., 91–0685 (1991)

  6. Reneaux, J.: Overview on drag reduction technologies for civil transport aircraft. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004)

  7. Choi, K., Yang, X., Clayton, B.R., Glover, E.J., Atlar, M., Semenov, B.N., Kulik, V.M.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. London, Ser. A 453(1965), 2229–2240 (1997)

    Article  MATH  Google Scholar 

  8. Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)

    Article  MathSciNet  Google Scholar 

  9. Luhar, M., Sharma, A., McKeon, B.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)

    Article  MathSciNet  Google Scholar 

  10. Zhang, C., Wang, J., Blake, W., Katz, J.: Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech. 823, 345–390 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ceccio, S.L.: Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42(1), 183–203 (2010)

    Article  Google Scholar 

  12. Perlin, M., Dowling, D.R., Ceccio, S.L.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138(9), 091104–091104–16 (2016)

    Article  Google Scholar 

  13. Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., Ceccio, S.L.: Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560–580 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alfredsson, P.H., Örlü, R.: Large-eddy breakup devices – a 40 years perspective from a Stockholm horizon. Flow Turbul. Combust. 100(4), 877–888 (2018)

    Article  Google Scholar 

  15. Bechert, D., Meyer, R., Hage, W.: Drag reduction of airfoils with miniflaps - can we learn from dragonflies?. AIAA Paper No., 2000–2315 (2000)

  16. Moin, P., Shih, T., Driver, D., Mansour, N.N.: Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids A 2(10), 1846–1853 (1990)

    Article  Google Scholar 

  17. Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)

    Article  Google Scholar 

  18. Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1428–1442 (2011)

    Article  Google Scholar 

  19. Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)

    Article  Google Scholar 

  21. Bai, H., Zhou, Y., Zhang, W., Xu, S., Wang, Y., Antonia, R.: Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316 (2014)

    Article  Google Scholar 

  22. Du, Y., Karniadakis, G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288(5469), 1230–1234 (2000)

    Article  Google Scholar 

  23. Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, H., Wu, J.Z., Luo, J.S.: Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34(3), 175–198 (2004)

    Article  MATH  Google Scholar 

  25. Itoh, M., Tamano, S., Yokota, K., Taniguchi, S.: Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27 (2006)

    Article  Google Scholar 

  26. Tamano, S., Itoh, M.: Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9 (2012)

    Article  Google Scholar 

  27. Klumpp, S., Meinke, M., Schröder, W.: Drag reduction by spanwise transversal surface waves. J. Turbul. 11, N22 (2010b)

    Article  Google Scholar 

  28. Koh, S., Meysonnat, P., Statnikov, V., Meinke, M., Schröder, W.: Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meysonnat, P.S., Koh, S.R., Roidl, B., Schröder, W.: Impact of transversal traveling surface waves in a non-zero pressure gradient turbulent boundary layer flow. Appl. Math. Comput. 272, 498–507 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Albers, M., Meysonnat, P.S., Schröder, W.: Drag reduction via transversal wave motions of structured surfaces. In: Int. Symp. Turbulence & Shear Flow Phenomena (TSFP-10) (2017)

  31. Liu, P.Q., Duan, H.S., Chen, J.Z., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47(1), 229–239 (2010)

    Article  Google Scholar 

  32. Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)

    Article  Google Scholar 

  33. Vinuesa, R., Schlatter, P.: Skin-friction control of the flow around a wing section through uniform blowing. In: European Drag Reduction and Flow Control Meeting (EDRFCM 2017) (2017)

  34. Atzori, M., Vinuesa, R., Stroh, A., Frohnapfel, B., Schlatter, P.: Assessment of skin-friction-reduction techniques on a turbulent wing section. In: 12Th ERCOFTAC Symp. on Engineering Turbulence Modeling and Measurements (ETMM12) (2018)

  35. Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  36. Henke, R.: A320 HLF Fin flight tests completed. Air Space Eur. 1(2), 76–79 (1999)

    Article  Google Scholar 

  37. Spalart, P.R., McLean, J.D.: Drag reduction: enticing turbulence, and then an industry. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1556–1569 (2011)

    Article  Google Scholar 

  38. Liou, M.S., Steffen, C.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31(4), 695–718 (2002)

    Article  MATH  Google Scholar 

  40. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6), 199–228 (1992)

    Article  Google Scholar 

  41. Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 135(2), 203–216 (1997)

    Article  MATH  Google Scholar 

  42. Roidl, B., Meinke, M., Schröder, W.: Zonal RANS-LES computation of transonic airfoil flow. AIAA Paper No., 2011–3974 (2011)

  43. Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010a)

    Article  MATH  Google Scholar 

  44. Meysonnat, P.S., Roggenkamp, D., Li, W., Roidl, B., Schröder, W.: Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. B. Fluids 55, 313–323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Feldhusen-Hoffmann, A., Statnikov, V., Klaas, M., Schröder, W.: Investigation of shock–acoustic-wave interaction in transonic flow. Exp. Fluids 59(1), 15 (2017)

    Article  Google Scholar 

  46. Fulker, J.L., Simmons, M.J.: An Experimental Investigation of Passive Shock/Boundary-Layer Control on an Aerofoil, pp. 379–400. Vieweg+Teubner Verlag, Wiesbaden (1997)

    Google Scholar 

  47. Stanewsky, E., Délery, J., Fulker, J., de Matteis, P.: Synopsis of the project EUROSHOCK II. In: Stanewsky, E., Délery, J., Fulker, J., de Matteis, P. (eds.) Drag Reduction by Shock and Boundary Layer Control, vol. 80, pp 1–124. Springer, Berlin (2002)

  48. Shan, H., Jiang, L., Liu, C.: Direct numerical simulation of flow separation around a NACA 0012 airfoil. Comp. Fluids 34(9), 1096–1114 (2005)

    Article  MATH  Google Scholar 

  49. Hosseini, S., Vinuesa, R., Schlatter, P., Hanifi, A., Henningson, D.: Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016). TSFP9 special issue

    Article  Google Scholar 

  50. Schlatter, P., Örlü, R.: Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)

    Article  MATH  Google Scholar 

  51. Vinuesa, R., Negi, P., Atzori, M., Hanifi, A., Henningson, D., Schlatter, P.: Turbulent boundary layers around wing sections up to Rec= 1,000,000. Int. J. Heat Fluid Flow 72, 86–99 (2018)

    Article  Google Scholar 

  52. Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016)

    Article  MathSciNet  Google Scholar 

  53. Koh, S.R., Meysonnat, P., Meinke, M., Schröder, W.: Drag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turbul. Combust. 95(1), 169–190 (2015)

    Article  Google Scholar 

  54. Vinuesa, R., Örlü, R., Schlatter, P.: On determining characteristic length scales in pressure gradient turbulent boundary layers. J. Phys. Conf. Ser. 708(1), 012014 (2016)

    Article  Google Scholar 

  55. Alfredsson, P.H., Segalini, A., Örlü, R.: A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the “outer” peak. Phys. Fluids 23(4), 041702 (2011)

    Article  Google Scholar 

  56. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25(10), 105115 (2013)

    Article  Google Scholar 

  58. Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lumley, J.L., Newman, G.R.: The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82(01), 161–178 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  60. Frohnapfel, B., Lammers, P., Jovanović, J., Durst, F.: Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577, 457–466 (2007)

    Article  MATH  Google Scholar 

  61. Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M., Schröder, W.: Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. B. Fluids 53, 101–112 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the funding of the research group FOR1779. Computing resources were provided by the High Performance Computing Center Stuttgart (HLRS) and by the Jülich Supercomputing Center (JSC) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Albers.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, M., Meysonnat, P.S. & Schröder, W. Actively Reduced Airfoil Drag by Transversal Surface Waves. Flow Turbulence Combust 102, 865–886 (2019). https://doi.org/10.1007/s10494-018-9998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9998-z

Keywords

Navigation