Skip to main content
Log in

Large Eddy Simulation of a Novel Gas-Assisted Coal Combustion Chamber

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this work a recently presented combustion chamber that is specifically designed for the investigation of gas-assisted coal combustion and the validation of models is simulated under reactive conditions for the first time. In the configuration coal combustion is assisted and stabilized by a methane flame. In the course of the investigation, the configuration’s complexity is increased successively. Results of the isothermal single-phase flow are discussed first. Subsequently, reproducibility of the single-phase methane flame by means of the applied modeling approach is evaluated. In a further step, coal particles having the same thermal power as the methane flame are injected into the configuration. Particle histories, the conversion of the coal particles as well as its retroactive effect on the gas phase are investigated. Experimental results based on laser diagnostics are provided for all operating points and used for comparison with numerical results. Gas phase velocity fields for all operating points are available. In order to identify the reaction in the reactive single-phase case planar laser induced fluorescence of the OH-radical (OH-PLIF) was applied. Overall good agreement between numerical and experimental results could be obtained. In the Large Eddy Simulation (LES) a Flamelet Generated Manifold (FGM) based model is utilized. The four-dimensional manifold is spanned by two mixture fractions, a reaction progress variable and the enthalpy on which the gas phase chemistry gets mapped onto. Thereby, the model accounts for both, volatiles reaction and char conversion. Furthermore, finite rate chemistry effects as well as non-adiabatic physics are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. International Energy Agency: Key World Energy Statistics 2016 (2016)

  2. Hwang, S.M., Kurose, R., Akamatsu, F., Tsuji, H., Makino, H., Katsuki, M.: Application of optical diagnostics techniques to a Laboratory-Scale turbulent pulverized coal flame. Energy Fuels 19, 382–392 (2005)

    Article  Google Scholar 

  3. Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S., kempf, A.M.: Large Eddy simulation of a pulverised coal jet flame. Proc. Combust. Inst. 34, 2419–2426 (2013)

    Article  Google Scholar 

  4. Kurose, R., Makino, H.: Large eddy simulation of a solid-fuel jet flame. Combust. Flame 135, 1–16 (2003)

    Article  Google Scholar 

  5. Wen, X., Jin, H., Stein, O.T., Fan, J., Luo, K.: Large Eddy Simulation of piloted pulverized coal combustion using the velocity-scalar joint filtered density function model. Fuel 158, 494–502 (2015)

    Article  Google Scholar 

  6. Zhao, X.Y., Haworth, D.C.: Transported PDF modeling of pulverized coal jet flames. Combust. Flame 161(7), 1866–1882 (2014)

    Article  Google Scholar 

  7. Stein, O. T., Olenik, G., Kronenburg, A., Cavallo Marincola, F., franchetti, B.M., Kempf, A.M., Ghiani, M., Vascellari, M., Hasse, C.: Towards Comprehensive Coal Combustion Modelling for LES. Flow Turbul. Combust. 90, 859–884 (2013)

    Article  Google Scholar 

  8. Rieth, M., Clements, A.G., Rabaçal, M., Proch, F., Stein, O.T., Kempf, A.M.: Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD. Proc. Combust. Inst. 36(2), 2181–2189 (2017)

    Article  Google Scholar 

  9. Hara, T., Muto, M., Kitano, T., Kurose, R., Komori, S.: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism. Combust. Flame 162(12), 4391–4407 (2015)

    Article  Google Scholar 

  10. Olenik, G., Stein, O.T., Kronenburg, A.: LES Of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1. Proc. Combust. Inst. 35, 2819–2828 (2015)

    Article  Google Scholar 

  11. Rabaçal, M., Franchetti, B.M., Cavallo Marincola, F., Proch, F., Costa, M., Hasse, C., Kempf, A.M.: Large Eddy Simulation of coal combustion in a large-scale laboratory furnace. Proc. Combust. Inst. 35, 3609–3617 (2015)

    Article  Google Scholar 

  12. Rieth, M., Proch, F., Clements, A.G., Rabaçal, M., Kempf, A.M.: Highly resolved flamelet LES of a semi-industrial scale coal furnace. Proc. Combust. Inst. 36 (3), 3371–3379 (2017)

    Article  Google Scholar 

  13. Rieth, M., Proch, F., Rabaçal, M., Franchetti, B.M., Marincola, F.C., Kempf, A.M.: Flamelet LES of a semi-industrial pulverized coal furnace. Combust. Flame 173, 39–56 (2016)

    Article  Google Scholar 

  14. Watanabe, J., Yamamoto, K.: Flamelet model for pulverized coal combustion. Proc. Combust. Inst. 35, 2315–2322 (2015)

    Article  Google Scholar 

  15. Watanabe, J., Okazaki, T., Yamamoto, K., Kuramashi, K., Baba, A.: Large-eddy simulation of pulverized coal combustion using flamelet model. Proc. Combust. Inst. 36(2), 2155–2163 (2017)

    Article  Google Scholar 

  16. Wen, X., Luo, K., Jin, H., Fan, J.: Numerical investigation of coal flamelet characteristics in a laminar counterflow with detailed chemistry. Fuel 195, 232–242 (2017)

    Article  Google Scholar 

  17. Wen, X., Luo, K., Wang, H., Luo, Y., Fan, J.: Analysis of pulverized coal flame stabilized in a 3D laminar counterflow. Combust. Flame 189, 106–125 (2018)

    Article  Google Scholar 

  18. Wen, X., Luo, Y., Luo, K., Jin, H., Fan, J.: LES Of pulverized coal combustion with a multi-regime flamelet model. Fuel 188, 661–671 (2017)

    Article  Google Scholar 

  19. Wen, X., Wang, H., Luo, Y., Luo, K., Fan, J.: Evaluation of flamelet/progress variable model for laminar pulverized coal combustion, vol. 29 (2017)

    Article  Google Scholar 

  20. Messig, D., Vascellari, M., Hasse, C.: Flame structure analysis and flamelet progress variable modelling of strained coal flames. Combust. Theory Modell. 21, 1–22 (2017)

    Article  MathSciNet  Google Scholar 

  21. Vascellari, M., Tufano, G.L., Stein, O.T., Kronenburg, A., Kempf, A.M., Scholtissek, A., Hasse, C.: A flamelet/progress variable approach for modeling coal particle ignition. Fuel 201, 29–38 (2017)

    Article  Google Scholar 

  22. Vascellari, M., Xu, H., Hasse, C.: Flamelet modeling of coal particle ignition. Proc. Combust. Inst. 34, 2445–2452 (2013)

    Article  Google Scholar 

  23. Xu, H., Hunger, F., Vascellari, M., Hasse, C.: A consistent flamelet formulation for a reacting char particle considering curvature effects. Combust. Flame 160(11), 2540–2558 (2013)

    Article  Google Scholar 

  24. Habermehl, M., Erfurth, J., Toporov, D., Förster, M., Kneer, R.: Experimental and numerical investigations on a swirl oxycoal flame. Appl. Therm. Eng. 49, 161–169 (2012)

    Article  Google Scholar 

  25. Habermehl, M., Hees, J., Massmeyer, A., Zabrodiec, D., Hatzfeld, O., Kneer, R.: Comparison of flame stability under air and Oxy-Fuel conditions for an aerodynamically stabilized pulverized coal swirl flame. J. Energy Resour. Technol. 138 (4), 042,209 (2016)

    Article  Google Scholar 

  26. Hees, J., Zabrodiec, D., Massmeyer, A., Habermehl, M., Kneer, R.: Experimental Investigation and Comparison of Pulverized Coal Combustion in CO2/O2 and N2/O2 Atmospheres. Flow Turbul. Combust. 96, 417–431 (2016)

    Article  Google Scholar 

  27. Heil, P., Toporov, D., Stadler, H., Tschunko, S., Förster, M., Kneer, R.: Development of an oxycoal swirl burner operating at low O2 concentrations. Fuel 88, 1269–1274 (2009)

    Article  Google Scholar 

  28. Toporov, D., Bocian, P., Heil, P., Kellermann, A., Stadler, H., Tschunko, S., Förster, M., Kneer, R.: Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combust. Flame 155, 605–618 (2008)

    Article  Google Scholar 

  29. Zabrodiec, D., Hees, J., Massmeyer, A., vom Lehn, F., Habermehl, M., Hatzfeld, O., Kneer, R.: Experimental investigation of pulverized coal flames in CO2/O2- and N2/O2-atmospheres: Comparison of solid particle radiative characteristics. Fuel 201, 136–147 (2017)

    Article  Google Scholar 

  30. Becker, L.G., Kosaka, H., Böhm, B., Doost, S., Knappstein, R., Habermehl, M., Kneer, R., Janicka, J., Dreizler, A.: Experimental investigation of flame stabilization inside the quarl of an oxyfuel swirl burner. Fuel 201, 124–135 (2017)

    Article  Google Scholar 

  31. Doost, A., Ries, F., Becker, L., Bürkle, S., Wagner, S., Ebert, V., Dreizler, A., di Mare, F., Sadiki, A., Janicka, J.: Residence time calculations for complex swirling flow in a combustion chamber using large-eddy simulations. Chem. Eng. Sci. 156, 97–114 (2016)

    Article  Google Scholar 

  32. Knappstein, R., Kuenne, G., Meier, T., Sadiki, A., Janicka, J.: Evaluation of coal particles volatiles reaction by using detailed kinetics and FGM tabulated chemistry. Fuel 201, 39–52 (2017)

    Article  Google Scholar 

  33. Lehnhäuser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)

    Article  MathSciNet  Google Scholar 

  34. Zhou, G., Davidson, L., Olsson, E.: Transonic Inviscid/Turbulent Airfoil Flow Simulations Using a Pressure Based Method with High Order Schemes. In: Fourteenth International Conference on Numerical Methods in Fluid Dynamics, pp. 372–378 (1995)

  35. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)

    Article  MathSciNet  Google Scholar 

  36. Smagorinsky, J.: General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Weather. Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  37. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  38. Lilly, D.K.: A proposed modification of the Germano subgrid-scale scale closure method. Phys. Fluids A: Fluid Dyn. 4(3), 633–635 (1992)

    Article  Google Scholar 

  39. Fehlberg, E.: Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing 4, 93–106 (1967)

    Article  Google Scholar 

  40. Schäfer, F., Breuer, M.: Comparison of c-space and p-space particle tracing schemes on high-performance computers: accuracy and performance. Int. J. Numer. Methods Fluids 39, 277–299 (2002)

    Article  MathSciNet  Google Scholar 

  41. Williams, F.A.: Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In: Turbulent Mixing in Nonreactive and Reactive Flows, pp 189–208. Springer (1975)

  42. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  43. Peters, N.: Laminar flamelet concepts in turbulent combustion. Symp. (Int.) Combust. 21(1), 1231–1250 (1988)

    Article  Google Scholar 

  44. de Goey, L.P.H., ten Thije Boonkkamp, J.H.M.: A flamelet description of premixed laminar flames and the relation with flame stretch. Combust. Flame 119(3), 253–271 (1999)

    Article  Google Scholar 

  45. van Oijen, J.A.: Flamelet-Generated Manifolds: Development and Application to Premixed Laminar Flames. Dissertation (Ph.D.), Eindhoven University of Technology, Eindhoven (2002)

    Google Scholar 

  46. van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using Flamelet-Generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  47. van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127, 2124–2134 (2001)

    Article  Google Scholar 

  48. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  49. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr, Lissianski, V.V., Qin, Z.: GRI-Mech 3.0 (http://combustion.berkeley.edu/gri-mech/)

  50. Butler, T.D., O’Rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Symposium (International) on Combustion 16(1), 1503–1515 (1977)

    Article  Google Scholar 

  51. O’Rourke, P.J., Bracco, F.V.: Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames. J. Comput. Phys. 33, 185–203 (1979)

    Article  Google Scholar 

  52. Charlette, F., Meneveau, C., Veynante, D.: A Power-Law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  53. Légier, J. P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Center for Turbulence Research. Proceedings of the Summer Program, pp. 157–168 (2000)

  54. Durand, L., Polifke, W.: Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver. In: ASME Turbo Expo Conference Proceedings, pp. 869–878 (2007)

  55. Kuenne, G., Ketelheun, A., Janicka, J.: LES Modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158, 1750–1767 (2011)

    Article  Google Scholar 

  56. Künne, G.: Large Eddy Simulation of Premixed Combustion Using Artificial Flame Thickening Coupled with Tabulated Chemistry. Ph.D. thesis. TU Darmstadt, Darmstadt (2012)

    Google Scholar 

  57. Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91, 867–893 (2013)

    Article  Google Scholar 

  58. Chem1D: A one-dimensional laminar flame code, developed at Eindhoven University of Technology (http://www.tue.nl/en/university/departments/mechanical-engineering/research/research-groups/multiphase-and-reactive-flows/our-expertise/chem1d/)

  59. Somers, B.: The Simulation of Flat Flames with Detailed and Reduced Chemical Models. Dissertation (Ph.D.), Eindhoven University of Technology, Eindhoven (1994)

    Google Scholar 

  60. Crowe, C.T., Sharma, M.P., Stock, D.E.: The Particle-Source-ln Cell (PSI-CELL) Model for Gas-Droplet Flows. J. Fluids Eng. 6, 325–332 (1977)

    Article  Google Scholar 

  61. Ranz, W.F., Marshall, W.R.: Evaporation from drops: I. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  62. Ranz, W.F., Marshall, W.R.: Evaporation from drops: II. Chem. Eng. Prog. 48, 173–180 (1952)

    Google Scholar 

  63. Badzioch, S., Hawksley, P.: Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Process. Des. Dev. 9, 521–530 (1970)

    Article  Google Scholar 

  64. Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Grant, D.M.: Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy Fuels 4, 54–60 (1990)

    Article  Google Scholar 

  65. Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M.S., Grant, D.M.: Chemical percolation model for devolatilization. 3. Direct use of carbon-13 NMR data to predict effects of coal type. Energy Fuels 6, 414–431 (1992)

    Article  Google Scholar 

  66. Grant, D.M., Pugmire, R.J., Fletcher, T.H., Kerstein, A.R.: Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuels 3, 175–186 (1989)

    Article  Google Scholar 

  67. Baum, M.M., Street, P.J.: Predicting the combustion behaviour of coal particles. Combust. Sci. Technol. 3(5), 231–243 (1971)

    Article  Google Scholar 

  68. Field, M.A., Gill, D.W., Morgan, B.B., Hawksley, P.G.W.: Combustion of pulverized coal. British coal utilization research association. leatherhead, UK (1967)

    Google Scholar 

  69. Gövert, B., Pielsticker, S., Kreitzberg, T., Habermehl, M., Hatzfeld, O., Kneer, R.: Measurement of reaction rates for pulverized fuel combustion in air and oxyfuel atmosphere using a novel fluidized bed reactor setup. Fuel 201, 81–92 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge financial support through Deutsche Forschungsgemeinschaft (DFG) through SFB/TRR 129. Computations were performed on the Lichtenberg High Performance Computer in Darmstadt.

Funding

This study was funded by Deutsche Forschungsgemeinschaft (SFB/TRR 129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Knappstein.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knappstein, R., Kuenne, G., Becker, L.G. et al. Large Eddy Simulation of a Novel Gas-Assisted Coal Combustion Chamber. Flow Turbulence Combust 101, 895–926 (2018). https://doi.org/10.1007/s10494-018-9910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9910-x

Keywords

Navigation