Skip to main content
Log in

Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper, the new idea of application of a curved rotor disk in rotor stator systems is presented and analyzed by using the large eddy simulation technique. The geometry of the examined rotor-stator system consists of a stationary flat disk (stator), a rotating curved disk (rotor) and a stationary enclosing cylinder (shroud). A hole in the center of stator allows the flow to enter the cavity, and the clearance between the shroud and rotor enables the flow to exit the cavity. Employing elliptical bumps with different geometrical parameters on the rotor disk (creating a curvature on the rotor), the rotating curved disk is parametrized. Three cavity cases (one with a flat rotor disk, another with the maximum outflow total pressure, and the third with the highest mass flow rate) are selected for LES analysis and more detailed investigation of flow and turbulence structures. The Favre-filtered governing equations for LES analysis of compressible turbulent flows are solved for all three cases. Radial and circumferential flow velocities as well as shear and normal Reynolds stresses in different cavity regions are studied. The flow in a rotor-stator cavity is simultaneously affected by the inlet flow, rotor rotation, and the bump on rotor disk. Creating a bump on rotor disk causes increase of both the radial pressure gradient and the mass flow rate of fluid that enters the rotor-stator cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

a :

Semi-minor axis of elliptical bump (m)

b :

Semi-major axis of elliptical bump (m)

C w :

Non-dimensional mass flow rate

e :

Total energy (J)

G :

Gap ratio

G c :

Shroud clearance ratio

h :

Distance between the center of elliptical bump and rotation axis (m)

K :

Entrainment coefficient

l :

Inlet radius (m)

M :

Moment applied on rotor (N m)

Ma :

Mach number

\( \dot{m} \) :

Mass flow rate (kg s−1)

∆P :

Total pressure difference between inlet and outlet (bar)

p :

Static pressure (bar)

Pr :

Prandtl number

q j :

Heat flux vector (W m−2)

R :

Disk radius (m)

Re θ :

Rotational Reynolds number

R ij :

Reynolds stress tensor with i, j = (r,θ, z)

r, θ, z :

Cylindrical coordinate

S :

Distance between disks (m)

S c :

Clearance between rotor and shroud (m)

\( {\overset{\sim }{S}}_{ij} \) :

Resolved strain rate tensor

T t :

Total temperature (K)

T :

Static temperature (K)

t :

Time (s)

u i :

Cartesian velocity components (m s−1)

V r, V θ, V z :

Radial, circumferential and axial velocity components (m s−1)

\( {v}_r^{\prime },{v}_{\theta}^{\prime },{v}_z^{\prime } \) :

Fluctuation of radial, circumferential and axial velocity components (m s−1)

x i i-th:

Cartesian coordinates (m)

DNS :

Direct numerical simulation

FD :

Finite difference

ILES :

Implicit large eddy simulation

LES :

Large eddy simulation

RANS :

Reynolds averaged Navier-Stokes

RMS :

Root mean square

SVV :

Spectral vanishing viscosity

SGS :

Sub-grid scale

α :

Turbulent stress on the scalar level

β :

Sub-grid scale pressure-velocity

γ :

Specific heat ratio

δ ij :

Kronecker delta

ε :

Rate of dissipation

η :

Kolomogorov length scale

κ :

Sub-grid scale turbulent dissipation rate

λ T :

Turbulent flow parameter

μ :

Dynamic viscosity (N s m−2)

ν :

Kinematic viscosity (s−1 m2)

π :

Sub-grid scale pressure-dilatation

ρ :

Fluid density (kg m−3)

σ ij :

Viscous stress tensor

τ ij :

Sub-grid scale stress tensor

Ω :

Rotational speed (rpm)

b :

Basic cavity configuration (flat rotor)

m :

Modified cavity configuration (rotor with elliptical bump)

\( \overline{.} \) :

(Filtering)

\( \overset{\sim }{.} \) :

Favre filtering

\( \widehat{.} \) :

Indicates that the quantity is based on filtered variables

\( \overset{=}{.} \) :

Shows the unit surface normal

References

  1. Tao, Z., Zhang, D., Luo, X., Xu, G., Han, J.: Windage heating in a shrouded rotor-Stator system. J. Eng. Gas Turbines Power. 136, 062602 (2014)

    Article  Google Scholar 

  2. Luo, X., Han, G., Wu, H., Wang, L., Xu, G.: Experimental investigation of pressure loss and heat transfer in a rotor–stator cavity with two outlets. Int. J. Heat Mass Transf. 78, 311–320 (2014)

    Article  Google Scholar 

  3. Luo, X., Wang, L., Zhao, X., Xu, G., Wu, H.: Experimental investigation of heat transfer in a rotor–stator cavity with cooling air inlet at low radius. Int. J. Heat Mass Transf. 76, 65–80 (2014)

    Article  Google Scholar 

  4. Debuchy, R., Poncet, S., Nour, F.A.: Bois G. Experimental and numerical investigation of turbulent air flow behaviour in a rotor-stator cavity. In European Turbomachinery Conference 2009 Mar 23

  5. Czarny, O., Iacovides, H., Launder, B.E.: Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow, Turbulence and Combustion. 69(1), 51–61 (2002)

    Article  MATH  Google Scholar 

  6. Poncet, S., Chauve, M.P., Schiestel, R.: Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow. Phys. Fluids. 17(7), 075110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nguyen, T.D., Pellé, J., Harmand, S., Poncet, S.: PIV measurements of an air jet impinging on an open rotor-stator system. Exp. Fluids. 53(2), 401–412 (2012)

    Article  Google Scholar 

  8. Gosman, A.D., Lockwood, F.C., Loughhead, J.N.: Prediction of recirculating, swirling, turbulent flow in rotating disc systems. J. Mech. Eng. Sci. 18(3), 142–148 (1976)

    Article  Google Scholar 

  9. Morse, A.P.: Application of a low Reynolds number k-ϵ turbulence model to high-speed rotating cavity flows. In ASME 1989 international gas turbine and Aeroengine congress and exposition 1989 Jun 4 (pp. V001T01A073-V001T01A073). Am. Soc. Mech. Eng.

  10. Iacovides, H., Theofanopoulos, I.P.: Turbulence modeling of axisymmetric flow inside rotating cavities. Int. J. Heat Fluid Flow. 12(1), 2–11 (1991)

    Article  Google Scholar 

  11. Iacovides, H., Toumpanakis, P.: Turbulence modelling of flow in axisymmetric rotor-Stator systems, 5th Int. In: Symp. On Refined Flow Modelling and Turbulence Measurements (1993 Sep 7)

    Google Scholar 

  12. Elena, L., Schiestel, R.: Turbulence modeling of rotating confined flows. Int. J. Heat Fluid Flow. 17(3), 283–289 (1996)

    Article  Google Scholar 

  13. Wu, X., Squires, K.D.: Prediction and investigation of the turbulent flow over a rotating disk. J. Fluid Mech. 418, 231–264 (2000)

    Article  MATH  Google Scholar 

  14. Andersson, H.I., Lygren, M.: LES of open rotor–stator flow. Int. J. Heat Fluid Flow. 27(4), 551–557 (2006)

    Article  Google Scholar 

  15. Poncet, S., Serre, É.: High-order LES of turbulent heat transfer in a rotor–stator cavity. Int. J. Heat Fluid Flow. 30(4), 590–601 (2009)

    Article  Google Scholar 

  16. Viazzo, S., Poncet, S., Serre, E., Randriamampianina, A., Bontoux, P.: High-order large eddy simulations of confined rotor-stator flows. Flow, Turbulence and Combustion. 88(1–2), 63–75 (2012)

    Article  MATH  Google Scholar 

  17. Tuliszka-Sznitko, E., Majchrowski, W., Kiełczewski, K.: Investigation of transitional and turbulent heat and momentum transport in a rotating cavity. Int. J. Heat Fluid Flow. 35, 52–60 (2012)

    Article  Google Scholar 

  18. Washizu, T., Lubisch, F., Obi, S.: LES study of flow between shrouded co-rotating disks. Flow, Turbulence and Combustion. 91(3), 607–621 (2013)

    Article  Google Scholar 

  19. Amirante, D., Hills, N.J.: Large-eddy simulations of wall bounded turbulent flows using unstructured linear reconstruction techniques. J. Turbomach. 137(5), 051006 (2015)

    Article  Google Scholar 

  20. Makino, S., Inagaki, M., Nakagawa, M.: Laminar-turbulence transition over the rotor disk in an enclosed rotor-Stator cavity. Flow, Turbulence and Combustion. 95(2–3), 399–394 (2015)

    Article  Google Scholar 

  21. Bridel-Bertomeu T, Gicquel LY, Staffelbach G. Wall Modeled LES and Its Impact on Rotor/Stator Cavity Unsteady Features. InASME Turbo Expo 2016: Turbomachinery technical conference and exposition 2016 Jun 13 (pp. V02CT39A042-V02CT39A042). American Society of Mechanical Engineers

  22. Lygren, M., Andersson, H.I.: Turbulent flow between a rotating and a stationary disk. J. Fluid Mech. 426, 297–326 (2001)

    Article  MATH  Google Scholar 

  23. Jacques, R., Le Quéré, P., Daube, O.: Axisymmetric numerical simulations of turbulent flow in rotor stator enclosures. Int. J. Heat Fluid Flow. 23(4), 381–397 (2002)

    Article  Google Scholar 

  24. Serre, E., Del Arco, E.C., Bontoux, P.: Annular and spiral patterns in flows between rotating and stationary discs. J. Fluid Mech. 434, 65–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Poncet, S., Serre, É., Le Gal, P.: Revisiting the two first instabilities of the flow in an annular rotor-stator cavity. Phys. Fluids. 21(6), 064106 (2009)

    Article  MATH  Google Scholar 

  26. Randriamampianina, A., Poncet, S.: Turbulence characteristics of the Bödewadt layer in a large enclosed rotor-stator system. Phys. Fluids. 18(5), 055104 (2006)

    Article  Google Scholar 

  27. Kiełczewski, K., Tuliszka-Sznitko, E.: Numerical study of the flow structure and heat transfer in rotating cavity with and without jet. Archives of Mechanics. 65(6), 527–548 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Pitz, D.B., Chew, J.W., Marxen, O., Hills, N.J.: Direct numerical simulation of rotating cavity flows using a spectral element-Fourier method. J. Eng. Gas Turbines Power. 139(7), 072602 (2017)

    Article  Google Scholar 

  29. Oguic, R., Poncet, S., Viazzo, S.: High-order direct numerical simulations of a turbulent round impinging jet onto a rotating heated disk in a highly confined cavity. Int. J. Heat Fluid Flow. 61, 366–378 (2016)

    Article  Google Scholar 

  30. Damavandi Darvish, M., Nejat, A.: Numerical investigation of fluid flow in a rotor–stator cavity with curved rotor disk. J. Braz. Soc. Mech. Sci. Eng. 40(4), 180 (2018)

    Article  Google Scholar 

  31. Vreman, B., Geurts, B., Kuerten, H.: Subgrid-modelling in LES of compressible flow. Appl. Sci. Res. 54(3), 191–203 (1995)

    Article  MATH  Google Scholar 

  32. Guleren KM. Large-Eddy Simulation of Wall-Bounded Flows Subjected to Curvature and Rotation (Doctoral Dissertation, University Of Manchester). 2007

    Google Scholar 

  33. Tyliszczak, A., Boguslawski, A.: Analysis of the subgrid models in the flow between rotating discs. InQuality and reliability of large-Eddy simulations II 2011 (pp. 101-110). Springer. Dordrecht.

  34. Owen, J.M., Rogers, R.H.: Flow and Heat Transfer in Rotating-Disc Systems, vol. 1. Research Studies Press/John Wiley, Taunton, U.K/John Wiley, New York (1989)

    Google Scholar 

  35. Baydar, E., Ozmen, Y.: An experimental investigation on flow structures of confined and unconfined impinging air jets. Heat Mass Transf. 42(4), 338–346 (2006)

    Article  Google Scholar 

  36. Séverac, É., Poncet, S., Serre, É., Chauve, M.P.: Large eddy simulation and measurements of turbulent enclosed rotor-stator flows. Phys. Fluids. 19(8), 085113 (2007)

    Article  MATH  Google Scholar 

  37. Lygren, M., Andersson, H.I.: Turbulence statistics in an open rotor–stator configuration. Phys. Fluids. 14(3), 1137–1145 (2002)

    Article  Google Scholar 

  38. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The result of this article is a part of ongoing PhD research thesis and there was no funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Nejat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damavandi, M.D., Nejat, A. Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation. Flow Turbulence Combust 103, 111–140 (2019). https://doi.org/10.1007/s10494-018-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-0001-9

Keywords

Navigation