Skip to main content
Log in

Large-eddy Simulation of Pilot-assisted Pulverized-coal Combustion in a Weakly Turbulent Jet

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-eddy simulation has been performed to investigate pilot-assisted pulverized-coal combustion in a weakly turbulent air jet. An advanced pyrolysis model, the chemical percolation devolatilization (CPD) model, has been incorporated into the LES framework to predict the local, instantaneous pyrolysis kinetics of coal particles during the simulation. Prediction on volatile species generation is thus improved, which provides an important initial condition for gas-phase volatile and solid-phase char combustion. For gas-phase combustion, the partially stirred reactor (PaSR) model is employed to model the combustion of volatile species, taking into account subgrid turbulence-chemistry interactions. For heterogeneous solid-phase char combustion, both the intrinsic chemical reaction on the internal surface of a char particle and the diffusion of gaseous oxidant through the film layer around the particle have been incorporated by using a kinetic/diffusion surface reaction model. The LES results show overall good agreements with experimental data. Sensitivity analysis has been performed to better understand the impact of parameter uncertainties on the LES results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khatami, R., Levendis, Y.A.: An overview of coal rank influence on ignition and combustion phenomena at the particle level. Combust. Flame 164, 22–34 (2016). doi:10.1016/j.combustflame.2015.10.031

    Article  Google Scholar 

  2. Vascellari, M., Schulze, S., Nikrityuk, P., Safronov, D., Hasse, C.: Numerical simulation of pulverized coal MILD combustion using a new heterogeneous combustion submodel. Flow Turbul. Combust. 92(1), 319–345 (2014). doi:10.1007/s10494-013-9467-7

    Article  Google Scholar 

  3. Knappstein, R., Kuenne, G., Ketelheun, A., Köser, J., Becker, L., Heuer, S., Schiemann, M., Scherer, V., Dreizler, A., Sadiki, A., Janicka, J.: Devolatilization and volatiles reaction of individual coal particles in the context of FGM tabulated chemistry. Combust. Flame 169, 72–84 (2016). doi:10.1016/j.combustflame.2016.04.014

    Article  Google Scholar 

  4. Stein, O.T., Olenik, G., Kronenburg, A., Marincola, F.C., Franchetti, B.M., Kempf, A.M., Ghiani, M., Vascellari, M., Hasse, C.: Towards comprehensive coal combustion modelling for LES. Flow Turbul. Combust. 90(4), 859–884 (2013)

    Article  Google Scholar 

  5. Li, M., Zhang, L.: Haze in China: Current and future challenges. Environ. Pollut. 189, 85–86 (2014). doi:10.1016/j.envpol.2014.02.024

    Article  Google Scholar 

  6. Hees, J., Zabrodiec, D., Massmeyer, A., Habermehl, M., Kneer, R.: Experimental investigation and comparison of pulverized coal combustion in CO2/O2- and N2/O2-atmospheres. Flow Turbul. Combust. 96 (2), 417–431 (2016). doi:10.1007/s10494-015-9662-9

    Article  Google Scholar 

  7. Mei, Z., Li, P., Mi, J., Wang, F., Zhang, J.: Diffusion MILD combustion of firing pulverized-coal at a pilot furnace. Flow Turbul. Combust. 95(4), 803–829 (2015). doi:10.1007/s10494-015-9642-0

    Article  Google Scholar 

  8. Kurose, R., Makino, H.: Large eddy simulation of a solid-fuel jet flame. Combust. Flame 135(1–2), 1–16 (2003). doi:10.1016/S0010-2180(03)00141-X

    Article  Google Scholar 

  9. Kurose, R., Watanabe, H., Makino, H.: Numerical simulations of pulverized coal combustion. KONA Powder Part. J. 27, 144–156 (2009)

    Article  Google Scholar 

  10. Edge, P., Gubba, S.R., Ma, L., Porter, R., Pourkashanian, M., Williams, A.: LES Modelling of air and oxy-fuel pulverised coal combustion—impact on flame properties. Proc. Combust. Inst. 33(2), 2709–2716 (2011)

    Article  Google Scholar 

  11. Gharebaghi, M., Irons, R.M.A., Ma, L., Pourkashanian, M., Pranzitelli, A.: Large eddy simulation of oxy-coal combustion in an industrial combustion test facility. Int. J. Greenhouse Gas Control 5, S100–S110 (2011)

    Google Scholar 

  12. Chen, L., Ghoniem, A.F.: Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study. Energy Fuel 26(6), 4783–4798 (2012)

    Article  Google Scholar 

  13. Yamamoto, K., Murota, T., Okazaki, T., Taniguchi, M.: Large eddy simulation of a pulverized coal jet flame ignited by a preheated gas flow. Proc. Combust. Inst. 33(2), 1771–1778 (2011)

    Article  Google Scholar 

  14. Pedel, J., Thornock, J.N., Smith, P.J.: Large eddy simulation of pulverized coal jet flame ignition using the direct quadrature method of moments. Energy Fuel 26 (11), 6686–6694 (2012)

    Google Scholar 

  15. Taniguchi, M., Okazaki, H., Kobayashi, H., Azuhata, S., Miyadera, H., Muto, H., Tsumura, T.: Pyrolysis and ignition characteristics of pulverized coal particles. J. Energy Resour. Technol. 123(1), 32–38 (2001)

    Article  Google Scholar 

  16. Hwang, S.M., Kurose, R., Akamatsu, F., Tsuji, H., Makino, H., Katsuki, M.: Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame. Energy Fuel 19(2), 382–392 (2005)

    Article  Google Scholar 

  17. Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S., Kempf, A.M.: Large eddy simulation of a pulverised coal jet flame. Proc. Combust. Inst. 34 (2), 2419–2426 (2013)

    Article  Google Scholar 

  18. Rabaçal, M., Franchetti, B.M., Marincola, F.C., Proch, F., Costa, M., Hasse, C., Kempf, A.M.: Large Eddy Simulation of coal combustion in a large-scale laboratory furnace. Proc. Combust. Inst. 35(3), 3609–3617 (2015). doi:10.1016/j.proci.2014.06.023

    Article  Google Scholar 

  19. Hara, T., Muto, M., Kitano, T., Kurose, R., Komori, S.: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism. Combust. Flame 162(12), 4391–4407 (2015). doi:10.1016/j.combustflame.2015.07.027

    Article  Google Scholar 

  20. Watanabe, J., Yamamoto, K.: Flamelet model for pulverized coal combustion. Proc. Combust. Inst. 35(2), 2315–2322 (2015). doi:10.1016/j.proci.2014.07.065

    Article  Google Scholar 

  21. Zhao, X.Y., Haworth, D.C.: Transported PDF modeling of pulverized coal jet flames. Combust. Flame 161(5), 1866–1882 (2014)

    Article  Google Scholar 

  22. Hashimoto, N., Kurose, R., Shirai, H.: Numerical simulation of pulverized coal jet flame employing the TDP model. Fuel 97, 277–287 (2012). doi:10.1016/j.fuel.2012.03.005

    Article  Google Scholar 

  23. Badzioch, S., Hawksley, P.G.W.: Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Proc. Des. Dev. 9(4), 521–530 (1970)

    Article  Google Scholar 

  24. Vascellari, M., Arora, R., Pollack, M., Hasse, C.: Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis. Fuel 113, 654–669 (2013)

    Article  Google Scholar 

  25. Vascellari, M., Xu, H., Hasse, C.: Flamelet modeling of coal particle ignition. Proc. Combust. Inst. 34(2), 2445–2452 (2013)

    Article  Google Scholar 

  26. Grant, D.M., Pugmire, R.J., Fletcher, T.H., Kerstein, A.R.: Chemical-model of coal devolatilization using percolation lattice statistics. Energy Fuel 3(2), 175–186 (1989). doi:10.1021/Ef00014a011

    Article  Google Scholar 

  27. Wan, K.D., Xia, J., Wang, Z.H., Wrobel, L.C., Cen, K.F.: Online-CPD-coupled large-eddy simulation of pulverized-coal pyrolysis in a hot turbulent nitrogen jet. Combust. Sci. Technol. 189(1), 103–131 (2017). doi:10.1080/00102202.2016.1193498

    Article  Google Scholar 

  28. Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16(1), 719–729 (1977). doi:10.1016/S0082-0784(77)80366-4

    Article  Google Scholar 

  29. Baum, M.M., Street, P.J.: Predicting the combustion behaviour of coal particles. Combust. Sci. Technol. 3(5), 231–243 (1971)

    Article  Google Scholar 

  30. Berglund, M., Fedina, E., Fureby, C., Tegnér, J., Sabel’nikov, V.: Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA J. 48(3), 540–550 (2010). doi:10.2514/1.43746

    Article  Google Scholar 

  31. Bermúdez, A., Ferrín, J.L., Liñán, A., Saavedra, L.: Numerical simulation of group combustion of pulverized coal. Combust. Flame 158(7), 1852–1865 (2011). doi:10.1016/j.combustflame.2011.02.002

    Article  Google Scholar 

  32. Xia, J., Luo, K.H., Kumar, S.: Large-eddy simulation of interactions between a reacting jet and evaporating droplets. Flow Turbul. Combust. 80(1), 133–153 (2008). doi:10.1007/s10494-007-9084-4

    Article  MATH  Google Scholar 

  33. Xia, J., Luo, K.H., Zhao, H.: Dynamic large-eddy simulation of droplet effects on a reacting plume in countercurrent configuration. Combust. Sci. Technol. 183(5), 487–518 (2011). doi:10.1080/00102202.2010.534517

    Article  Google Scholar 

  34. Xia, J., Zhao, H., Megaritis, A., Luo, K.H., Cairns, A., Ganippa, L.C.: Inert-droplet and combustion effects on turbulence in a diluted diffusion flame. Combust. Flame 160(2), 366–383 (2013). doi:10.1016/j.combustflame.2012.10.007

    Article  Google Scholar 

  35. Yi, F.X.: Direct numerical simulation of gas/coal particles gas-solid two-phase round jet combustion flow. Ph.D. Thesis, Zhejiang University. in Chinese (2012)

  36. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid - scale eddy viscosity model. Phys. Fluids A 3(5), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  37. Sutherland, W.: LII. The viscosity of gases and molecular force. Philos. Mag. 36 (223), 507–531 (1893). doi:10.1080/14786449308620508

    Article  MATH  Google Scholar 

  38. Jones, W.P., Lyra, S., Navarro-Martinez, S.: Large eddy simulation of a swirl stabilized spray flame. Proc. Combust. Inst. 33(2), 2153–2160 (2011). doi:10.1016/j.proci.2010.07.032

    Article  Google Scholar 

  39. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Prog. 48 (3), 141–146 (1952)

    Google Scholar 

  40. Chandrasekhar, S.: Radiative transfer. Dover Publications, New York (1960)

    MATH  Google Scholar 

  41. Wan, K.D., Wang, Z.H., He, Y., Xia, J., Zhou, Z.J., Zhou, J.H., Cen, K.F.: Experimental and modeling study of pyrolysis of coal, biomass and blended coal–biomass particles. Fuel 139, 356–364 (2015)

    Article  Google Scholar 

  42. Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transf. 104(4), 602–608 (1982). doi:10.1115/1.3245174

    Article  Google Scholar 

  43. Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Grant, D.M.: Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy Fuel 4(1), 54–60 (1990)

    Article  Google Scholar 

  44. Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M.S., Grant, D.M.: Chemical percolation model for devolatilization .3. Direct Use of C-13 Nmr Data to Predict Effects of Coal Type. Energy Fuel 6(4), 414–431 (1992). doi:10.1021/Ef00034a011

    Article  Google Scholar 

  45. Genetti, D., Fletcher, T.H., Pugmire, R.J.: Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content. Energy Fuel 13(1), 60–68 (1999)

    Article  Google Scholar 

  46. Genetti, D.B.: An advanced model of coal devolatilization based on chemical structure. M.S Thesis, Brigham Young University (1999)

  47. Wang, Z.H., Wan, K.D., Xia, J., He, Y., Liu, Y.Z., Liu, J.Z.: Pyrolysis characteristics of coal, biomass, and coal–biomass blends under high heating rate conditions: effects of particle diameter, fuel type, and mixing conditions. Energy Fuel 29(6), 5036–5046 (2015). doi:10.1021/acs.energyfuels.5b00646

    Article  Google Scholar 

  48. Westbrook, C.K., Dryer, F.L.: Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27(1–2), 31–43 (1981). doi:10.1080/00102208108946970

    Article  Google Scholar 

  49. Milewski, J., Świrski, K., Santarelli, M., Leone, P.: Advanced methods of solid oxide fuel cell modeling. Springer-Verlag, London (2011)

    Book  Google Scholar 

  50. Duwig, C., Nogenmyr, K.-J., Chan, C.-k., Dunn, M.J.: Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theory Model. 15(4), 537–568 (2011). doi:10.1080/13647830.2010.548531

    Article  MATH  Google Scholar 

  51. El-Asrag, H., Menon, S.: Large eddy simulation of bluff-body stabilized swirling non-premixed flames. Proc. Combust. Inst. 31(2), 1747–1754 (2007). doi:10.1016/j.proci.2006.07.251

    Article  Google Scholar 

  52. Sabelnikov, V., Fureby, C.: LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame 160(1), 83–96 (2013). doi:10.1016/j.combustflame.2012.09.008

    Article  Google Scholar 

  53. Moule, Y., Sabelnikov, V., Mura, A.: Highly resolved numerical simulation of combustion in supersonic hydrogen–air coflowing jets. Combust Flame 161(8), 2647–2668 (2014). doi:10.1016/j.combustflame.2014.04.011

    Article  Google Scholar 

  54. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was performed by the first author KDW when he was a Research Assistant at Brunel University London under the support of the Engineering and Physical Sciences Research Council (EPSRC) of the UK and the China Scholarship Council. The research was also supported by the National Natural Science Foundation of China (51422605, 51390491) and National Basic Research Program of China (2012CB214906). This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, K., Xia, J., Wang, Z. et al. Large-eddy Simulation of Pilot-assisted Pulverized-coal Combustion in a Weakly Turbulent Jet. Flow Turbulence Combust 99, 531–550 (2017). https://doi.org/10.1007/s10494-017-9817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9817-y

Keywords

Navigation