Skip to main content
Log in

A One-Equation Local Correlation-Based Transition Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A model for the prediction of laminar-turbulent transition processes was formulated. It is based on the LCTM (‘Local Correlation-based Transition Modelling’) concept, where experimental correlations are being integrated into standard convection-diffusion transport equations using local variables. The starting point for the model was the γ-Re θ model already widely used in aerodynamics and turbomachinery CFD applications. Some of the deficiencies of the γ-Re θ model, like the lack of Galilean invariance were removed. Furthermore, the Re θ equation was avoided and the correlations for transition onset prediction have been significantly simplified. The model has been calibrated against a wide range of Falkner-Skan flows and has been applied to a variety of test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menter, F.R., Esch, T., Kubacki, S.: Transition Modelling Based on Local Variables. In: Proc. 5th Int. Sym. on Engineering Turbulence Modelling and Measurements, Mallorca, Spain (2002)

  2. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A Correlation based Transition Model using Local Variables Part 1 - Model Formulation (2004). ASME Paper No. GT-2004-53452

  3. Menter, F.R., Langtry, R.B., Völker, S.: Transition Modelling for General Purpose CFD Codes. Journal Flow Turbulence and Combustion 77, 277–303 (2006)

    Article  MATH  Google Scholar 

  4. Langtry, R.B., Menter, F.R.: Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J. 47(12), 2984–2906 (2009)

    Article  Google Scholar 

  5. Content, C., Houdeville, R.: Application of the γ-Reθ Laminar-Turbulent Transition Model in Navier-Stoles Computations AIAA Paper 2010-4445 (2010)

  6. Suluksna, K., Juntasaro, V., Juntasaro, E.: Capability Assessment of Intermittency Transport Equations for Modeling Flow Transition. In: Proc. 19 Conference of Mechanical Engineering Network of Thailand, Phuket, Thailand (2005)

  7. Malan, P., Suluksna, K., Juntasaro, E.: Calibrating the γ-ReΘ Transition Model for Commercial CFD. AIAA Paper 2009-1142 (2009)

  8. Misaka, T., Obayashi, S.: Application of Local Correlation–Based Transition Model to Flows around Wings. AIAA Paper 2006-918 (2006)

  9. Piotrowski, W., Elsner, W., Drobniak, S.: Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation. ASME J. of Turbomach 132(1) (2009)

  10. Coder, J. M., Maughmer M. D.: One-Equation Transition Closure for Eddy-Viscosity Turbulence Models in CFD. AIAA Paper 2012-0672 (2012)

  11. Coder, J. M., Maughmer M. D.: Computational Fluid Dynamics Compatible Transition Modelling using an Amplification Factor Transport Equation. AIAA J. (2014). doi:10.2514/1.J052905. to be published in AIAA Journal

  12. Seyfert, C., Krumbein, A.: Correlation-Based Transition Transport Modeling for Three-dimensional Aerodynamic Configurations. AIAA Paper 2012-0448 (2012)

  13. Grabe, C., Krumbein, A.: Extension of the γ-Reθ Model for Prediction of Crossflow Transition. AIAA Paper 2014-1269 (2014)

  14. Medida, S., Baeder, J.: A New Crossflow Transition Onset Criterion for RANS Turbulence Models. AIAA Paper 2013-3081 (2013)

  15. ANSYS® CFX, Release 17.0, Help System, Theory Guide, ANSYS, Inc.

  16. Dassler, P., Kozulovic, D., Fiala, A.: Transport Equation for Roughness Effects on Laminar-Turbulent Transition (2012)

  17. Durbin, P.A.: An intermittency model for bypass transition. Int. J. Heat Fluid Flow 36, 1–6 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ge, X., Arolla, S., Durbin, P.: A Bypass Transition Model Based on the Intermittency Function. J. Flow Turbulence and Combustion (2014). doi:10.1007/s10494-014-9533-9

  19. Walters, D.K., Leylek, J.H.: A New Model for Boundary-Layer Transition Using a Single-Point Rans Approach. ASME J. of Turbomach. 126(1), 193–202 (2004)

    Article  Google Scholar 

  20. Walters, D.K., Cokljat, D.: A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows. J. of Fluids Eng. 130, 2008

  21. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, CA (1993)

  22. Menter, F.R.: Influence of freestream values on k-ω turbulence model predictions. AIAA J. 30(6), 1657–1659 (1992)

    Article  Google Scholar 

  23. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 269–289 (1994)

    Article  Google Scholar 

  24. Abu-Ghannam, B.J., Shaw, R.: Natural Transition of Boundary Layers - The Effects of Turbulence, Pressure Gradient, and Flow History. J. of Mech. Eng. Sci. 22 (5), 213–228 (1980)

    Article  Google Scholar 

  25. Kato, M., Launder, B. E.: The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders. In: Proc. 9th Sym. on Turbulent Shear Flows, Kyoto, Japan (1993)

  26. Mayle, R.E.: The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME J. of Turbomach. 113(4), 509–537 (1991)

    Article  Google Scholar 

  27. Loitsyanskii L.G.: Mechanics of Liquids and Gases. Begell House, New York (1995)

  28. Savill, A.M.: Some recent progress in the turbulence modelling of by-pass transition. In: So, R.M.C., Speziale C.G., Launder, B.E. (eds.) Near-Wall Turbulent Flows, Elsevier, p. 829 (1993)

  29. Schubauer, G.B., Klebanoff, P.S.: Contribution on the Mechanics of Boundary Layer Transition. NACA TN 3489 (1955)

  30. Volino, R. J., Hultgren, L. S.: Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions. ASME Paper No. 2000-GT-0260 (2000)

  31. Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation. ASME J. of Turbomach. 125(3), 455–464 (2003)

    Article  Google Scholar 

  32. Swalwell, K.E.: The effect of turbulence on stall of horizontal axis wind turbines. PhD thesis, Monash University, Australia (2005)

  33. Dorney, D.J., Lake, J.P., King, P.L., Ashpis, D.E.: Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows. AIAA Paper AIAA-2000-0737 (2000)

  34. Huang, J., Corke, T. C., Thomas, F. O.: Plasma Actuators for Separation Control of Low Pressure Turbine Blades. AIAA Paper AIAA-2003-1027 (2003)

  35. Lake, J. P., King, P. I., Rivir, R. B.: Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves. AIAA Paper AIAA-00-0738 (2000)

  36. Lake, J. P., King, P. I., Rivir, R. B.: Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number. AIAA Paper AIAA-99-0242 (1999)

  37. Stieger, R., Hollis, D., Hodson, H.: Unsteady Surface Pressures due to Wake Induced Transition in a Laminar Separation Bubble on a LP Turbine Cascade. ASME Paper GT-2003-38303 (2003)

  38. Wu, X., Durbin P.A.: Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage, vol. 446, pp 199–228 (2001)

  39. Zaki, T.A., Wissink, J.G., Rodi, W., Durbin, P.A.: Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence, vol. 665, pp 57–98 (2010)

  40. Fischer, A., Riess, W., Seume, J. R.: Performance of strongly bowed stators in a 4-stage high speed compressor. ASME Paper No. GT2003-38392 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel E. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menter, F.R., Smirnov, P.E., Liu, T. et al. A One-Equation Local Correlation-Based Transition Model. Flow Turbulence Combust 95, 583–619 (2015). https://doi.org/10.1007/s10494-015-9622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9622-4

Keywords

Navigation