Skip to main content
Log in

On the Application of the Levenberg–Marquardt Method in Conjunction with an Explicit Runge–Kutta and an Implicit Rosenbrock Method to Assess Burning Velocities from Confined Deflagrations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The potential of the Levenberg–Marquardt method combined with an explicit Runge–Kutta method for non-stiff systems, and, an implicit Rosenbrock method for stiff systems to investigate burning velocities using explosion bombs was explored. The implementation of this combination of methods was verified on three benchmark test problems, and, by the application of two integral balance models to laminar hydrogen-air and methane-air explosions. The methodology described here was subsequently applied to quantify the coefficients of a turbulent burning velocity correlation for a methane-air explosion in the decaying flow field of the standard 20-litre explosion sphere. The outcome of this research indicates that the usefulness of the 20-litre sphere can be extended beyond the measurement of practical explosion parameters. When combined with the methodology in this paper, turbulent burning velocity correlations can be assessed in different parts of the Borghi-diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popat, N.R., Catlin, C.A., Arntzen, B.J., Lindstedt, R.P., Hjertager, B.H., Solberg, T., Saeter, O., van den Berg, A.C.: Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models. J. Hazard. Mater. 45, 1–15 (1996)

    Article  Google Scholar 

  2. Watterson, J.K., Connell, I.J., Savill, A.M., Dawes, W.N.: A solution-adaptive mesh procedure for predicting confined explosions. Int. J. Numer. Methods Fluids 26, 235–247 (1998)

    Article  MATH  Google Scholar 

  3. Molkov, V.V., Makarov, D., Grigorash, A.: Cellular structure of explosion flames: modeling and large-eddy simulation. Combust. Sci. Technol. 176, 851–865 (2004)

    Article  Google Scholar 

  4. Skjold, T., Arntzen, B., Hansen, O.R., Taraldset, O.J., Storvik, I.E., Eckhoff, R.K.: Simulating dust explosions with the first version of DESC. Trans. Inst. Chem. Eng. B, Process. Saf. Environ. Protect. 83, 151–160 (2005)

    Article  Google Scholar 

  5. Skjold, T., Arntzen, B., Hansen, O.R., Storvik, I.E., Eckhoff, R.K.: Simulation of dust explosions in complex geometries with experimental input from standardized tests. J. Loss Prev. Process Ind. 19, 210–217 (2006)

    Article  Google Scholar 

  6. Eckhoff, R.K.: Current status and expected future trends in dust explosion research. J. Loss Prev. Process Ind. 18, 225–237 (2005)

    Article  Google Scholar 

  7. Sathiah, P., Komen, E., Roekaerts, D.: The role of CFD combustion modeling in hydrogen safety management - I: validation based on small scale experiments. Nucl. Eng. Des. 248, 93–107 (2012)

    Article  Google Scholar 

  8. Sathiah, P., van Haren, S., Komen, E., Roekaerts, D.: The role of CFD combustion modeling in hydrogen safety management - II: validation based on homogeneous hydrogen-air experiments. Nucl. Eng. Des. 252, 289–302 (2012)

    Article  Google Scholar 

  9. Law, C.K.: Propagation, structure, and limit phenomena of laminar flames at elevated pressures. Combust. Sci. Technol. 178, 335–360 (2006)

    Article  Google Scholar 

  10. Kuo, K.K.: Principles of Combustion, 2nd edn. Wiley, New York (2005)

    Google Scholar 

  11. Tse, S.D., Zhu, D.L., Law, C.K.: Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. In: Proceedings of the Twenty-Eighth Symposium (International) on Combustion, pp. 1793–1800. The Combustion Institute, Pittsburgh (2000)

    Google Scholar 

  12. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5, 329–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations, 2nd edn. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996).

    Book  MATH  Google Scholar 

  14. Van den Bulck, E.: Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion. J. Loss Prev. Process Ind. 18, 35–42 (2005)

    Article  Google Scholar 

  15. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge, MA (1972)

    Google Scholar 

  16. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill Series in Mechanical Engineering, New York (1975)

    Google Scholar 

  17. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)

    Book  MATH  Google Scholar 

  18. Yakhot, V.: Propagation velocity of premixed turbulent flames. Combust. Sci. Technol. 60, 191–214 (1988)

    Article  MathSciNet  Google Scholar 

  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, UK (2007)

    MATH  Google Scholar 

  20. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley, Reading, MA (1997)

    Google Scholar 

  21. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  22. Muller, M.E.: A comparison of methods for generating normal deviates on digital computers. J. ACM 6(3), 376–383 (1959)

    Article  MATH  Google Scholar 

  23. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, UK (2002)

    Google Scholar 

  24. Enright, W.H., Pryce, J.D.: Two FORTRAN packages for assessing initial value problems. ACM Trans. Math. Softw. 13, 1–27 (1987)

    Article  MATH  Google Scholar 

  25. Gear, C.W.: The automatic integration of stiff ordinary differential equations. Inf. Process. 68, 187–193 (1969)

    MathSciNet  Google Scholar 

  26. Lapidus, L., Aiken, R.C., Liu, Y.A.: The occurrence and numerical solution of physical and chemical systems having widely varying time constants. In: Willoughby, R.A. (ed.) Stiff Differential Systems, pp. 187–200. Plenum, New York (1974)

    Chapter  Google Scholar 

  27. Luss, D., Amundson, N.R.: Stability of batch catalytic fluidized beds. AIChE J., Part A 14, 211–221 (1968)

    Article  Google Scholar 

  28. Dahoe, A.E., Zevenbergen, J.F., Lemkowitz, S.M., Scarlett, B.: Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root-law’. J. Loss Prev. Process Ind. 9(1), 33–44 (1996)

    Article  Google Scholar 

  29. Dahoe, A.E., de Goey, L.P.H.: On the determination of the laminar burning velocity of closed vessel explosions. J. Loss Prev. Process Ind. 16, 457–478 (2003)

    Article  Google Scholar 

  30. Dahoe, A.E.: Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions. J. Loss Prev. Process Ind. 18, 152–166 (2005)

    Article  Google Scholar 

  31. Dahoe, A.E., Cant, R.S., Scarlett, B.: On the decay of turbulence in the 20-liter explosion sphere. Flow Turbul. Combust. 67, 159–184 (2001)

    Article  Google Scholar 

  32. Dahoe, A.E., van der Nat, K., Braithwaite, M., Scarlett, B.: On the effect of turbulence on the maximum explosion pressure of a dust deflagration. KONA – Powder Part. 19, 178–196 (2001)

    Google Scholar 

  33. Dahoe, A.E.: Dust explosions: a study of flame propagation. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (2000)

  34. Bradley, D., Lau, A.K.C., Lawes, M.: Flame stretch as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 338, 359–387 (1992)

    Article  Google Scholar 

  35. Miller, J.A., Mitchell, R.E., Smooke, M.D., Kee, R.J.: Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. In: Proceedings of the Nineteenth Symposium (International) on Combustion, pp. 181–196. The Combustion Institute, Pittsburgh (1982)

    Google Scholar 

  36. Andrews, G.E., Bradley, D., Lwakabamba, S.B.: Turbulence and turbulent flame propagation – a critical appraisal. Combust. Flame 24, 285–304 (1975)

    Article  Google Scholar 

  37. Gülder, Ö.L.: Turbulent premixed flame propagation models for different combustion regimes. In: Proceedings of the Twenty-Third Symposium (International) on Combustion, pp. 743–750. The Combustion Institute, Pittsburgh (1990)

    Google Scholar 

  38. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 1–74 (2002)

    Article  Google Scholar 

  39. Dixon-Lewis, G., Wilson, J.G.: A method for the measurement of the temperature distribution in the inner cone of a Bunsen flame. Trans. Faraday Soc. 46, 1106–1114 (1951)

    Article  Google Scholar 

  40. Janisch, G.: Geschwindigkeits- und Temperaturverteilung in einer ebenen laminaren Flammenfront. Chem. Ing. Tech. 43, 561–565 (1971)

    Article  Google Scholar 

  41. Andrews, G.E., Bradley, D.: The burning velocity of methane-air mixtures. Combust. Flame 19, 275–288 (1972)

    Article  Google Scholar 

  42. Damköhler, G.: Der einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z. Elektrochem. 46, 601–626 (1940)

    Google Scholar 

  43. Damköhler, G.: The effect of turbulence on the flame velocity in gas mixtures. Technical Memorandum NACA TM 1112. National Advisory Committee for Aeronautics, Washington (1947)

    Google Scholar 

  44. Schelkin, K.I.: On combustion in a turbulent flow. Sov. Phys. – Tech. Phys. 13, 520–530 (1943)

    Google Scholar 

  45. Schelkin, K.I.: On combustion in a turbulent flow. NACA Technical Memorandum 1110. National Advisory Committee for Aeronautics, Washington (1947). Original: J. Tech. Phys. (USSR) 13(9–10), 520–530 (1943)

    Google Scholar 

  46. Karlovitz, B., Denniston, D.W., Wells, F.E.: Investigation of turbulent flames. J. Chem. Phys. 19(5), 541–547 (1951)

    Article  Google Scholar 

  47. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212 (1922)

    Article  Google Scholar 

  48. Leason, D.B.: Turbulence and flame propagation in premixed gases. Fuel 30, 233–239 (1951)

    Google Scholar 

  49. Tucker, M.: Interaction of a free flame front with a turbulence field. Technical Note NACA TN 3407. National Advisory Committee for Aeronautics, Washington (1955)

    Google Scholar 

  50. Clavin, P., Williams, F.A.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 589–604 (1979)

    Article  MATH  Google Scholar 

  51. Clavin, P., Williams, F.A.: Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low turbulence. J. Fluid Mech. 116, 251–282 (1982)

    Article  MATH  Google Scholar 

  52. Klimov, A.M.: Premixed turbulent flames – interplay of hydrodynamic and chemical phenomena. Prog. Astronaut. Aeronaut. 88, 133–146 (1983)

    Google Scholar 

  53. Abdel-Gayed, R.G., Ali-Khishali, K.J., Bradley, D.: Turbulent burning velocity and flame straining in explosions. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 391, 393–414 (1984)

    Article  Google Scholar 

  54. Pope, S.B., Anand, M.S.: Flamelet and distributed combustion in premixed turbulent flames. In: Proceedings of the Twentieth Symposium (International) on Combustion, pp. 403–410. The Combustion Institute, Pittsburgh (1984)

    Google Scholar 

  55. Kerstein, A.R.: Pair-exchange model of turbulent premixed flame propagation. In: Proceedings of the Twenty-First Symposium (International) on Combustion, pp. 1281–1289. The Combustion Institute, Pittsburgh (1986)

    Google Scholar 

  56. Gouldin, F.C.: An application of fractals to modeling premixed turbulent flames. Combust. Flame 68, 249–266 (1987)

    Article  Google Scholar 

  57. Lovejoy, S.: The area-perimeter relation for rain and cloud areas. Science 216, 185–187 (1982)

    Article  Google Scholar 

  58. Hentschel, H.G.E., Procaccia, I.: Relative diffusion in turbulent media: the fractal dimension of clouds. Phys. Rev. A 29, 1461–1470 (1984)

    Article  MathSciNet  Google Scholar 

  59. Sreenivasan, K.R., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–186 (1986)

    Article  MathSciNet  Google Scholar 

  60. Abdel-Gayed, R.G., Bradley, D.: Derivation of turbulent transport coefficients from turbulent parameters in isotropic turbulence. Trans. ASME J. Fluids Eng. 99, 732–736 (1977)

    Article  Google Scholar 

  61. Peters, N.: Laminar flamelet concepts in turbulent combustion. In: Proceedings of the Twenty-First Symposium (International) on Combustion, pp. 1231–1250. The Combustion Institute, Pittsburgh (1988)

    Google Scholar 

  62. Peters, N.: Length scales in laminar and turbulent flames. Prog. Astronaut. Aeronaut. 135, 155–182 (1991)

    Google Scholar 

  63. Kerstein, A.R.: Simple derivation of Yakhot’s turbulent premixed flamespeed formula. Combust. Sci. Technol. 60, 163–165 (1988)

    Article  Google Scholar 

  64. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards, Philadelphia (2005)

    Google Scholar 

  65. Kerstein, A.R., Ashurst, W., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37, 2728–2731 (1988)

    Article  Google Scholar 

  66. Liu, Y., Lenze, B.: The influence of turbulence on the burning velocity of premixed CH4–H2 flames with different laminar burning velocities. In: Proceedings of the Twenty-Second Symposium (International) on Combustion, pp. 747–754. The Combustion Institute, Pittsburgh (1988)

    Google Scholar 

  67. Leuckel, W., Nastoll, W., Zarzalis, N.: Experimental investigation of the influence of turbulence on the transient premixed flame propagation inside closed vessels. In: Proceedings of the Twenty-Third Symposium (International) on Combustion, pp. 729–734. The Combustion Institute, Pittsburgh (1990)

    Google Scholar 

  68. Abdel-Gayed, R.G., Bradley, D., Lawes, M.: Turbulent burning velocities: a general correlation in terms of straining rates. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 414, 389–413 (1987)

    Article  Google Scholar 

  69. Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14, 993–1025 (1995)

    Google Scholar 

  70. Bray, K.N.C., Libby, P.A., Moss, J.B.: Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combust. Sci. Technol. 41, 143–172 (1984)

    Article  Google Scholar 

  71. Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – part I: general formulation. Combust. Flame 61, 87–102 (1985)

    Article  Google Scholar 

  72. Bray, K.N.C., Libby, P.A.: Passage times and flamelet crossing frequencies in premixed turbulent combustion. Combust. Sci. Technol. 47, 253 (1986)

    Article  Google Scholar 

  73. Shy, S.S., Lin, W.J., Wei, J.C.: An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 456, 1997–2019 (2000)

    Article  Google Scholar 

  74. Hamberger, P., Schneider, H., Jamois, D., Proust, C.: Correlation of turbulent burning velocity and turbulence intensity for starch dust air mixtures. In: Proceedings of the Third European Combustion Meeting, 11–13 April 2007, Chania, Greece (2007)

  75. Bray, K.N.C.: Studies of the turbulent burning velocity. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 431, 315–335 (1990)

    Article  Google Scholar 

  76. Schneider, H., Proust, C.: Determination of turbulent burning velocities of dust air mixtures with the open tube method. J. Loss Prev. Process Ind. 20, 470–476 (2007)

    Article  Google Scholar 

  77. Dahoe, A.E., van Velzen T.J., Sluijs, L.P., Neervoort, F.J., Leschonski, S., Lemkowitz, S.M., van der Wel, P.G.J., Scarlett, B.: Construction and operation of a 20-litre dust explosion sphere at and above atmospheric conditions. In: Mewis, J.J., Pasman, H.J., De Rademaeker, E.E. (eds.) Loss Prevention and Safety Promotion in the Process Industries, Proceedings of the 8th International Symposium, vol. 2, pp. 285–302. European Federation of Chemical Engineering (EFCE), Elsevier Science (1995)

  78. Dahoe, A.E., van der Wel, P.G.J., Lemkowitz, S.M., Leschonski, S., Scarlett, B.: Effects of turbulence on dust explosions at elevated initial pressures. In: Leschonski, K. (ed.) PARTEC 95, 6th European Symposium Particle Characterization, pp. 257–266. European Federation of Chemical Engineering (EFCE), Nürnberg Messe GmbH (1995)

  79. Dahoe, A.E., Zevenbergen, J.F., Lemkowitz, S.M., Scarlett, B.: Dust explosion testing with the strengthened 20-litre sphere. In: The Seventh International Colloquium on Dust Explosions, pp. 7.30–7.46. Christian Michelsen Research AS (1996)

  80. Siwek, R.: 20-l laborapparatur für die Bestimmung der explosionskenngrößen brennbarer Stäube. Ph.D. thesis, Technical University of Winterthur, Winterthur, Switzerland (1977)

  81. Borghi, R.: On the structure and morphology of turbulent premixed flames. In: Casci, C. (ed.) Recent Advances in the Aerospace Sciences, pp. 117–138. Plenum Publishing Corporation (1985)

  82. Goodwin, D.G.: Cantera C++ User’s Guide. California Institute of Technology (2002)

  83. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  84. Williams, F.A.: Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems. Combustion Science and Engineering Series, 2nd edn. The Benjamin/Cummings Publishing Company, Menlo Park, California (1985)

    Google Scholar 

  85. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM Classics in Applied Mathematics, vol. 15. Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Book  MATH  Google Scholar 

  86. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM Classics in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics, Philadelphia (1996)

    Book  MATH  Google Scholar 

  87. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester, England (2003)

    Book  MATH  Google Scholar 

  88. Lambert, J.D.: Numerical methods for ordinary differential systems: the initial value problem. Wiley, Chichester (1991)

    MATH  Google Scholar 

  89. Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations. I. Nonstiff problems. In: Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  90. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  91. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, UK (1992)

    MATH  Google Scholar 

  92. Cash, J.R., Karp, A.H.: A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16, 201–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  93. Shampine, L.F.: Implementation of Rosenbrock methods. ACM Trans. Math. Softw. 8, 93–113 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  94. Spiegel, M.R., Stephens, L.J.: Theory and Problems of Statistics. Schaum’s Outline Series, 3rd edn. McGraw-Hill, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dahoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahoe, A.E., Skjold, T., Roekaerts, D.J.E.M. et al. On the Application of the Levenberg–Marquardt Method in Conjunction with an Explicit Runge–Kutta and an Implicit Rosenbrock Method to Assess Burning Velocities from Confined Deflagrations. Flow Turbulence Combust 91, 281–317 (2013). https://doi.org/10.1007/s10494-013-9462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9462-z

Keywords

Navigation