Skip to main content

Advertisement

Log in

On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Commercial and military aircrafts or miniature aerial vehicles can suffer from massive flow separation when high angles of attack are required. Single dielectric barrier discharge (DBD) actuators have demonstrated their capability of controlling such a separated flow at low external velocity. However, the processes resulting in the improvement of the flight performances remain unclear. In the present study, the reattachment process along the suction side of a NACA 0015 placed at an angle of attack of 16° is experimentally investigated for an external velocity of 20 m/s (Re = 260,000). A single DBD actuator is mounted at the leading edge of the model. The velocity fields above the suction side of the airfoil are measured by a high-speed acquisition system (3 kHz). The results indicate that the baseline flow presents shed vortices that form at the leading edge and linearly grow along the free shear layer axis. This vortex shedding is organized and exhibits a specific frequency of about 90 Hz. The continuous actuation produces a partial flow reattachment up to 70% of the chord length. Temporal cross-correlation function indicates the presence of a vortex shedding at the trailing edge of the controlled flow. Finally, the temporal analysis demonstrates that the reattachment process requires 50 ms to reach a stabilized attached flow. The time-resolved analysis of the reattachment suggests that the actuation by plasma discharge acts as a catalyser by reinforcing one of the coherent flow structures already existing in the natural flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corke, T.C., Post, M.L.: Overview of plasma flow control: concepts, optimization and applications. AIAA paper 2005-563

  2. Moreau, E.: Airflow control by non-thermal plasma actuators. J. Phys. D, Appl. Phys. 40, 605 (2007)

    Article  Google Scholar 

  3. Tsubakino, D., Tanaka, Y., Fujii, K.: Effective layout of plasma actuators for a flow separation control on a wing. AIAA paper 2007-474

  4. Corke, T.C., Jumper, E.J., Post, M.L., Orlov, D., McLaughlin, T.E.: Applications of weakly-ionized plasmas as wing flow-control devices. AIAA paper 2002–0350

  5. Roth, J.R.: Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a One Atmosphere Uniform Glow Discharge Plasma. Phys. Plasmas 10, 2117 (2003)

    Article  Google Scholar 

  6. Sosa, R., Moreau, E., Touchard, G., Artana, G.: Stall control at high angle of attack with plasma sheet actuators. Exp. Fluids. 42, 143 (2007)

    Article  Google Scholar 

  7. Göksel, B., Greenblatt, D., Rechenberg, I., Nayeri, C.N., Paschereit, C.O.: Steady and unsteady plasma wall jets for separation and circulation control. AIAA paper 2006-3686

  8. Corke, T.C., Mertz, B., Patel, M.P.: Plasma flow control optimized airfoil. AIAA paper 2006-1208

  9. Roth, J.R.: Electrohydrodynamically induced airflow in a one atmosphere uniform glow discharge surface plasma. In: 25th IEEE Int. Conf. Plasma Science (1998)

  10. Enloe, C.L., McLaughlin, T.E., VanDyken, R.D., Kachner, K.D., Jumper, E.J., Corke, T.C.: Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J. 42, 589 (2004)

    Article  Google Scholar 

  11. Pons, J., Moreau, E., Touchard, G.: Asymmetric surface barrier discharge in air at atmospheric pressure: electric properties and induced airflow characteristics. J. Phys. D, Appl. Phys. 38, 3635 (2005)

    Article  Google Scholar 

  12. Boeuf, J.P., Lagmich, Y., Unfer, T.H., Callegari, T.H., Pitchford, L.C.: Electrohydrodynamic force in dielectric barrier discharge plasma actuator. J. Phys. D, Appl. Phys. 40, 652 (2007)

    Article  Google Scholar 

  13. Roth, J.R., Dai, X.: Optimization of the aerodynamic plasma actuator as an EHD electrical device. AIAA paper 2006-1203

  14. Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G., Cazalens, M.: Optimization of a dielectric barrier discharge actuator by stationnary and non-stationnary measurements of the induced flow velocity: application to airflow control. Exp. Fluids 43, 917 (2007)

    Article  Google Scholar 

  15. Benard, N., Moreau, E.: Effects of altitude on the electromechanical characteristics of a single dielectric barrier discharge plasma actuator. AIAA paper 2010-4633

  16. Benard, N., Balcon, N., Moreau, E.: Electric wind produced by a surface dielectric barrier discharge operating over a wide range of relative humidity. AIAA paper 2009-488

  17. Benard, N., Braud, P., Jolibois, J., Moreau, E.: Airflow reattachment along a NACA 0015 airfoil by a surface dielectric barrier discharge actuator—time-resolved particle image velocimetry investigation. AIAA paper 2008-4202

  18. Benard, N., Bonnet, J.P., Moreau, E., Griffin, J., Cattafesta, L.N.: Benefits of using hysteresis effects for closed-loop separation control by plasma actuator. AIAA paper 2010-4259

  19. Westerweel, J.: Particle image velocimetry—theory and application. Ph.D. thesis, Delft University Press (1993)

  20. Bonnet, J.P., Delville, J., Glauser, M.N., Antonia, R.A., Bisset, D.K., et al.: Collaborative testing of eddy structure identification methods in free turbulent shear flows. Exp. Fluids 25, 97 (1998)

    Article  Google Scholar 

  21. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422 (2001)

    Article  Google Scholar 

  22. Kerherve, F., Jordan, P., Gervais, Y., Valiere, J.C., Braud, P.: Two-point laser Doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exp. Fluids 37, 419 (2004)

    Article  Google Scholar 

  23. Post, M.L., Corke, T.C.: Separation control using plasma actuators—stationary and oscillating airfoils. AIAA paper 2004-0841

  24. Sosa, R., Artana, G.: Steady control of laminar separation over airfoils with plasma sheet actuators. J. Electrost. 64, 604 (2006)

    Article  Google Scholar 

  25. Kitsios, V., Kotapati, R.B., Mittal, R., Ooi, A., Soria, J., You, D.: Numerical simulation of lift enhancement on a NACA 0015 airfoil using ZNMF jets. In: Proceedings of the Center for Turbulence Research Summer Program, pp. 457–468. Stanford University/NASA (2006)

  26. Tuck, A., Soria, J.: Micro-jets flow control at the leading edge of a NACA 0015 airfoil. In: Proceeding of 1st Forum in Flow Control (2004)

  27. Ben Chiekh, M., Bera, J.C., Sunyach, M.: Synthetic jet control for flows in a diffuser: vectoring, spreading and mixing enhancement. J. Turbul. 4, 1 (2003)

    Google Scholar 

  28. Huerre, P., Monkewitz, P.A.: Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473 (1990)

    Article  MathSciNet  Google Scholar 

  29. Roshko, A.: On the drag and shedding frequency of two-dimensional bluff bodies. NACA report 3169 (1954)

  30. Wu, J.Z., Lu, X.Y., Denny, A.G., Fan, M., Wu, J.M.: Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 21 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477 (1996)

    Article  Google Scholar 

  32. Artana, G., Sosa, R., Moreau, E., Touchard, G.: Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators. Exp. Fluids 35, 580 (2003)

    Article  Google Scholar 

  33. Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation. Proc. Aerosp. Sci. 36, 487 (2000)

    Article  Google Scholar 

  34. Greenblatt, D., Wygnanski, I.J.: Use of periodic excitation to enhance airfoil performance at low Reynolds numbers. J. Aircr. 38, 190 (2001)

    Article  Google Scholar 

  35. Seifert, A., Greenblatt, D., Wygnanski, I.: Active separation control: an overview of Reynolds and Mach numbers effects. Aerosp. Sci. Technol. 8, 569 (2004)

    Article  Google Scholar 

  36. Mittal, R., Kotapati, R.B., Cattafesta, L.N.: Numericla study of the resonant interactions and flow control in a canonical separated flow. AIAA paper 2005-1261

  37. Jukes, T., Choi, K.S., Segawa, T., Yoshida, H.: Jet flow induced by a surface plasma actuator. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 222, 347–356 (2008)

    Article  Google Scholar 

  38. Balcon, N., Benard, N., Moreau, E.: Formation process of the electric wind produced by a plasma actuator. IEEE Trans. Dielectr. Electr. Insul. 16, 463–469 (2009)

    Article  Google Scholar 

  39. Orlov, D., Apker, T., He, C., Othman, H., Corke, T.C.: Modeling and experiment of leading edge separation control using SDBD plasma actuators. AIAA paper 2007-0877

  40. Benard, N., Moreau, E.: Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. D, Appl. Phys. 43 145201

  41. Benard, N., Jolibois, J., Moreau, E.: Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator. J. Electrost. 67, 133–139 (2009)

    Article  Google Scholar 

  42. Zaman, K.B.M.Q., McKinzie, D.J., Rumsey, C.L.: A natural low-frequency oscillation of flow over an airfoil near stalling conditions. J. Fluid Mech. 202, 403 (1989)

    Article  Google Scholar 

  43. Darabi, A., Wygnanski, I.: Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J. Fluid Mech. 510, 105 (2004)

    Article  MATH  Google Scholar 

  44. Gillaranz, J.L., Traub, L.W., Rediniotis, O.K.: Characterization of a compact, high power synthetic jet actuator for flow separation control. AIAA paper 2002-0127

  45. Duvigneau, R., Visonneau, M.: Simulation and optimization of stall control for an airfoil with synthetic jet. Aerosp. Sci. Tech. 10, 279 (2006)

    Article  Google Scholar 

  46. Tuck, A., Soria, J.: Active flow control over a NACA 0015 airfoil using a ZNMF jet. In: Proceeding of the 15th Australian Fluid Mechanics Conference, 13–17 December, Sydney, Australia (2004)

  47. Brzozowski, D., Glezer, A.: Transient separation control using pulse-combustion actuator. AIAA paper 2006-3024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Benard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benard, N., Moreau, E. On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator. Flow Turbulence Combust 87, 1–31 (2011). https://doi.org/10.1007/s10494-011-9325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9325-4

Keywords

Navigation