Skip to main content
Log in

Is Helmholtz Resonance a Problem for Micro-jet Actuators?

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A theoretical analysis is described that determines the conditions for Helmholtz resonance for a popular class of self-contained microjet actuator used in both synthetic- and pressure-jump (pulse-jet) mode. It was previously shown that the conditions for Helmholtz resonance are identical to those for optimizing actuator performance for maximum mass flux. The methodology is described for numerical-simulation studies on how Helmholtz resonance affects the interaction of active and nominally inactive micro-jet actuators with a laminar boundary layer. Two sets of numerical simulations were carried out. The first set models the interaction of an active actuator with the boundary layer. These simulations confirm that our criterion for Helmholtz resonance is broadly correct. When it is satisfied we find that the actuator cannot be treated as a predetermined wall boundary condition because the interaction with the boundary layer changes the pressure difference across the exit orifice thereby affecting the outflow from the actuator. We further show that strong inflow cannot be avoided even when the actuator is used in pressure-jump mode. In the second set of simulations two-dimensional Tollmien–Schlichting waves, with frequency comparable with, but not particularly close to, the Helmholtz resonant frequency, are incident on a nominally inactive micro-jet actuator. The simulations show that under these circumstances the actuators act as strong sources of 3D Tollmien–Schlichting waves. It is surmised that in the real-life aeronautical applications with turbulent boundary layers broadband disturbances of the pressure field, including acoustic waves, would cause nominally inactive actuators, possibly including pulsed jets, to act as strong disturbance sources. Should this be true it would probably be disastrous for engineering applications of such massless microjet actuators for flow control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coe, D.J., Allen, M.G., Trautman, M.A., Glezer, A.: Micromachined jets for manipulation of macro flows. In: Proc. of Solid-State Sensor and Actuator Workshop, pp. 243–247 (1994)

  2. Hassan, A.A., JanakiRam, R.D.: Effects of zero-mass synthetic jets on the aerodynamics of the NACA-0012 airfoil. J. Am. Helicopter Soc. 43(4), 303–311 (1998)

    Google Scholar 

  3. Smith, D.R., Amitay, M., Kibens, V., Parekh, D., Glezer, A.: Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209, (1998)

  4. Crook, A., Sadri, A.M., Wood, N.J.: The development and implementation of synthetic jets for the control of separated flows. AIAA Paper 99-3176, (1999)

  5. Smith, D.R.: Interaction of a synthetic jet with a crossflow boundary layer. AIAA J. 40(11), 2277–2288 (2002)

    ADS  Google Scholar 

  6. Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M., Cattafesta, L.: Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J. 41(2), 240–247 (2003)

    ADS  Google Scholar 

  7. Lee, C., Hong, G., Ha, Q.P., Mallinson, S.G.: A piezoelectrically actuated micro synthetic jet for active flow control. Sens. Actuators A Phys. 108(1–3), 168–174 (2003)

    Article  Google Scholar 

  8. Bridges, A., Smith, D.R.: Influence of orifice orientation on a synthetic-jet–boundary-layer interaction. AIAA J. 41(12), 2394–2402 (2003)

    ADS  Google Scholar 

  9. Watson, M., Jaworski, A.J., Wood, N.J.: A study of synthetic jets from rectangular and dual-circular orifices. Aero J. 107(1073), 427–434 (2003)

    Google Scholar 

  10. Traub, L.W., Miller, A., Rediniotis, O.: Effects of synthetic jet actuation on a ramping NACA 0015 airfoil. J. Aircr. 41(5), 1153–1162 (2004)

    Google Scholar 

  11. Yamaleev, N.K., Carpenter, M.H., Ferguson, F.: Reduced-order model for efficient simulation of synthetic jet actuators. AIAA J. 43(2), 357–369 (2005)

    ADS  Google Scholar 

  12. Liddle, S.C., Wood, N.J.: Investigation into clustering of synthetic jet actuators for flow separation control applications. Aero J. 109(1091), 35–44 (2005)

    Google Scholar 

  13. Yamaleev, N.K., Carpenter, N.H.: Quasi one-dimensional model for realistic three-dimensional synthetic jet actuators. AIAA J. 44(2), 208–216 (2006)

    ADS  Google Scholar 

  14. Vatsa, V.N., Turkel, E.: Simulation of synthetic jets using unsteady Reynolds-averaged Navier–Stokes equations. AIAA J. 44(2), 217–224 (2006)

    ADS  Google Scholar 

  15. Lockerby, D.A., Carpenter, P.W., Davies, C.: Numerical simulation of the interaction of microactuators and boundary layers. AIAA J. 40(1), 67–73 (2002)

    ADS  Google Scholar 

  16. Lockerby, D.A., Carpenter, P.W.: Modeling and design of microjet actuators. AIAA J. 42(2), 220–227 (2004)

    ADS  Google Scholar 

  17. Lockerby, D.A., Carpenter, P.W., Davies, C.: Control of sublayer streaks using microjet actuators. AIAA J. 43(9), 1878–1886 (2005)

    Article  ADS  Google Scholar 

  18. Glezer, A., Amitay, M.: Synthetic jets. Annu. Rev. Fluid Mech. 34, 503–529 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Helmholtz, H.: Theorie der Luftschwingungen in Röhren mit offenen Enden. J. Reine Angew. Math. 57, 1–72 (1860)

    MATH  Google Scholar 

  20. Dowling, A.P., Ffowcs Williams, J.E.: Sound and Sources of Sound. Horwood, Chichester, England (1983)

    MATH  Google Scholar 

  21. Tang, H., Zhong, S.: Modelling the characteristics of synthetic jet actuators. AIAA Paper 2005–4748, (2005)

  22. Tang, H., Zhong, S., Jabbal, M., Guo, F., Garcillan, L.: Towards the design of synthetic jet actuators for full-scale flight conditions. Part 2: Low-dimensional performance prediction models and actuator design method. Flow Turbul. Combust. (2007) doi:10.1007/s10494-006-9061-3

  23. Zhong, S., Jabbal, M., Tang, H., Garcillan, L., Guo, F., Wood, N., Warsop, C.: Towards the design of synthetic jet actuators for full-scale flight conditions. Part 1: The fluid mechanics of synthetic jet actuators. Flow Turbul. Combust. (2007) doi:10.1007/s10494-006-9064-0

  24. Kook, H., Mongeau, L., Franchek, M.A.: Active control of pressure fluctuations due to flow over Helmholtz resonators. J. Sound Vib. 255(1), 61–76 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Urzynicok, F., Fernholz, H.-H.: Flow-induced acoustic resonators for separation control. AIAA Paper 2002–2819, (2002)

  26. Cullen, L.M.: Acoustic receptivity in boundary layers with surface roughness. PhD thesis, Queen Mary College, London (1999)

  27. Warsop, C., Hucker, M., Press, A.J., Dawson, P.: Pulsed air-jet actuators for flow separation control. Flow Turbul. Combust. (2007) doi:10.1007/s10494-006-9060-4

  28. Kudar, K.L., Carpenter, P.W.: Numerical investigation and feasibility study of a PZT-driven micro-valve pulsed-jet actuator. Flow Turbul. Combust. (2007) doi:10.1007/s10494-006-9057-z

  29. Schiller, L.: Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Zahigkeitsmessungen. Z. Angew. Math. Mech. 2, 96–106 (1922)

    Article  Google Scholar 

  30. Goldstein, S.: Modern Developments in Fluid Dynamics, vol 1. Dover, New York, USA (1965)

    Google Scholar 

  31. Sexl, Th.: Über den von E.G. Richardson entdecken Annulareffekt. Z. Phys. 61, 349–362 (1930)

    Article  ADS  Google Scholar 

  32. Uchida, S.: The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. Z. Angew. Math. Phys. 7, 403–422 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  34. Abramowitz, M., Stegun, A. (eds.): Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  35. Davies, C., Carpenter, P.W.: A novel velocity–vorticity formulation of the Navier–Stokes equations with applications to boundary-layer disturbance evolution. J. Comp. Phys. 172, 119–165 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Lockerby, D.A.: Numerical simulations of boundary-layer control using MEMS actuation. PhD thesis, University of Warwick, UK (2001)

  37. Gaster, M.: A theoretical model of a wave packet in the boundary layer on a flat plate. Proc. R. Soc. Lond. Ser. A 347, 271–289 (1975)

    ADS  Google Scholar 

  38. Gaster, M., Grant, I.: An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. R. Soc. Lond. Ser. A 347, 253–269 (1975)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Carpenter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockerby, D.A., Carpenter, P.W. & Davies, C. Is Helmholtz Resonance a Problem for Micro-jet Actuators?. Flow Turbulence Combust 78, 205–222 (2007). https://doi.org/10.1007/s10494-006-9056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9056-0

Key words

Navigation