Skip to main content

Advertisement

Log in

Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Phytoseiid mites of the genus Phytoseius are natural enemies of tetranychid and eriophyid herbivorous mites mostly found on hairy plants where they feed on prey, as well as on pollen. Nevertheless, the nutritional ecology and the role of these predators in biological pest control are only rarely addressed. In the present study, we evaluated the potential of Phytoseius finitimus to feed and reproduce on three major greenhouse pests, the two-spotted spider mite, the greenhouse whitefly and the western flower thrips. Additionally, we estimated the effect of cattail pollen when provided to the predator alone or in mixed diets with prey. Contrary to thrips larvae, both spider mite larvae and whitefly crawlers sustained the development of P. finitimus. In addition, females consumed more spider mite eggs and larvae, as well as whitefly crawlers than thrips larvae, but laid eggs when feeding on all prey. When provided alone, cattail pollen sustained the development and reproduction of the predator. The addition of pollen in mixed diets with prey reduced prey consumption, though it increased the predator’s egg production. We discuss the implications of our findings for biological pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakker FM, Sabelis MW (1989) How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomol Exp Appl 50(1):47–51

    Article  Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Article  Google Scholar 

  • Broufas GD, Koveos DS (2001) Development, survival and reproduction of Euseius finlandicus (Acari: Phytoseiidae) at different constant temperatures. Exp Appl Acarol 25(6):441–460

    Article  PubMed  CAS  Google Scholar 

  • Broufas GD, Pappas ML, Koveos DS (2007) Development, survival, and reproduction of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) at different constant temperatures. Environ Entomol 36(4):657–665

    Article  PubMed  CAS  Google Scholar 

  • Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: A case study. Exp Appl Acarol 20(1):1–22

    Google Scholar 

  • Castagnoli M, Simoni S (1999) Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 23(3):217–234

    Article  Google Scholar 

  • Cox PD, Matthews L, Jacobson RJ, Cannon R, MacLeod A, Walters KFA (2006) Potential for the use of biological agents for the control of Thrips palmi (Thysanoptera: Thripidae) outbreaks. Biocontrol Sci Tech 16(9):871–891

    Article  Google Scholar 

  • De Brujin PJA, Egas M, Janssen A, Sabelis MW (2006) Pheromone-induced priming of a defensive response in western flower thrips. J Chem Ecol 32(7):1599–1603

    Article  PubMed  CAS  Google Scholar 

  • Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23(9):741–763

    Article  PubMed  CAS  Google Scholar 

  • El-Laithy AYM (1998) Laboratory studies on growth parameters of three predatory mites associated with eriophyid mites in olive nurseries. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 105(1):78–83

    Google Scholar 

  • Faraji F, Çobanoğlu S, Çakmak I (2011) A checklist and a key for the Phytoseiidae species of Turkey with two new species records (Acari: Mesostigmata). Int J Acarol 37(suppl. 1):221–243

    Article  Google Scholar 

  • Gorji MK, Fathipour Y, Kamali K (2009) The effect of temperature on the functional response and prey consumption of Phytoseius plumifer (Acari: Phytoseiidae) on the two-spotted spider mite. Acarina 17(2):231–237

    Google Scholar 

  • Gotoh T, Nozawa M, Yamaguchi K (2004) Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Appl Entomol Zool 39(1):97–105

    Article  Google Scholar 

  • Helle W, Sabelis MW (1985) Spider mites, their biology, natural enemies and control. World crop pests 1B. Elsevier, Amsterdam

    Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12(2):197–229

    Article  PubMed  CAS  Google Scholar 

  • Kolokytha PD, Fantinou AA, Papadoulis GT (2011) Effect of several different pollens on the bio-ecological parameters of the predatory mite Typhlodromus athenas Swirski and Ragusa (Acari: Phytoseiidae). Environ Entomol 40(3):597–604

    Article  PubMed  CAS  Google Scholar 

  • Koveos DS, Broufas GD (2000) Functional response of Euseius finlandicus and Amblyseius andersoni to Panonychus ulmi on apple and peach leaves in the laboratory. Exp Appl Acarol 24(4):247–256

    Article  PubMed  CAS  Google Scholar 

  • Kreiter S, Tixier MS, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31(4):648–660

    Article  Google Scholar 

  • Kreiter S, Tixier MS, Bourgeois T (2003) Do generalist phytoseiid mites (Gamasida: Phytoseiidae) have interactions with their host plants? Insect Sci Appl 23(1):35–50

    Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23(2):119–131

    Article  Google Scholar 

  • Lee HS, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53(1):17–27

    Article  PubMed  Google Scholar 

  • Lorenzon M, Pozzebon A, Duso C (2012) Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Exp Appl Acarol 58(3):259–278

    Article  PubMed  Google Scholar 

  • Mailloux J, Le Bellec F, Kreiter S, Tixier MS, Dubois P (2010) Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp Appl Acarol 52(3):275–290

    Article  PubMed  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  PubMed  CAS  Google Scholar 

  • Messelink GJ, Rv M, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biol Control 44(3):372–379

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55(3):387–398

    Article  Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A (2013) Biological control of aphids in the presence of thrips and their enemies. Biocontrol 58(1):45–55

    Article  Google Scholar 

  • Momen F, El-Borolossy M (2010) Juvenile survival and development in three phytoseiid species (Acari: Phytoseiidae) feeding on con- and heterospecific immatures. Acta Phytopathol Entomol Hung 45(2):349–357

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25(4):271–291

    Article  PubMed  CAS  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27(1–2):57–68

    Article  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp Appl Acarol 31(1–2):15–26

    Article  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2004) Vulnerability of Bemisia tabaci immatures to phytoseiid predators: Consequences for oviposition and influence of alternative food. Entomol Exp Appl 110(2):95–102

    Article  Google Scholar 

  • Nomikou M, Sabelis MW, Janssen A (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. Biocontrol 55(2):253–260

    Article  Google Scholar 

  • Özsisli T, Çobanoğlu S (2011) Mite (Acari) fauna of some cultivated plants from Kahramanmaraş. Turk Afr J Biotechnol 10(11):2149–2155

    Google Scholar 

  • Papaioannou-Souliotis P, Markoyiannaki-Printziou D, Rumbos I, Adamopoulos I (1999) Phytoseiid mites associated with vine in various provinces of Greece: a contribution to faunistics and biogeography, with reference to eco-ethological aspects of Phytoseius finitimus (Ribaga) (Acari: Phytoseiidae). Acarologia 40(2):112–125

    Google Scholar 

  • Peverieri GS, Simoni S, Goggioli D, Liguori M, Castagnoli M (2009) Effects of variety and management practices on mite species diversity in Italian vineyards. Bull Insectol 62(1):53–60

    Google Scholar 

  • Praslička J, Barteková A, Schlarmannová J, Malina R (2009) Predatory mites of the Phytoseiidae family in integrated and ecological pest management systems in orchards in Slovakia. Biologia 64(5):959–961

    Article  Google Scholar 

  • Rasmy AH, Elbanhawy EM (1974a) The phytoseiid mite Phytoseius plumifer as a predator of the eriophyid mite Aceria ficus (Acarina). Entomophaga 19(4):427–430

    Article  Google Scholar 

  • Rasmy AH, Elbanhawy EM (1974b) Behaviour and bionomics of the predatory mite, Phytoseius plumifer (Acarina: Phytoseiidae) as affected by physical surface features of host plants. Entomophaga 19(3):255–257

    Article  Google Scholar 

  • Roda A, Nyrop J, English-Loeb G (2003) Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29(3–4):193–211

    Article  PubMed  CAS  Google Scholar 

  • Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116(5):807–817

    Article  Google Scholar 

  • Shipp JL, Whitfield GH (1991) Functional-response of the predatory mite, Amblyseius cucumeris (Acari, Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae). Environ Entomol 20(2):694–699

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: The Principles and Practice of Statistics in Biological Research 3rd edn. Freeman, New York

    Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • SPSS (2010) IBM SPSS statistics base 19, copyright SPSS Inc. 1989

  • Stavrinides MC, Skirvin DJ (2003) The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bull Entomol Res 93(4):343–350

    Article  PubMed  Google Scholar 

  • Swirski E, Ragusa S (1976) Notes on predacious mites of Greece, with a description of five new species (Mesostigmata: Phytoseiidae). Phytoparasitica 4(2):101–122

    Article  Google Scholar 

  • Swirski E, Ragusa S (1977) Some predacious mites of Greece, with a description of one new species (Mesostigmata: Phytoseiidae). Phytoparasitica 5(2):75–84

    Article  Google Scholar 

  • Tixier MS, Kreiter S, Auger P, Weber M (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): influence of wind and crop environment. Exp Appl Acarol 22(9):523–542

    Article  Google Scholar 

  • Tsolakis H, Ragusa E, Ragusa Di Chiara S (2000) Distribution of phytoseiid mites (Parasitiformes, Phytoseiidae) on hazelnut at two different altitudes in Sicily (Italy). Environ Entomol 29(6):1251–1257

    Article  Google Scholar 

  • Tuovinen T (1994) Influence of surrounding trees and bushes on the phytoseiid mite fauna on apple orchard trees in Finland. Agric Ecosyst Environ 50(1):39–47

    Article  Google Scholar 

  • Van Maanen R, Broufas G, Oveja MF, Sabelis MW, Janssen A (2012) Intraguild predation among plant pests: Western flower thrips larvae feed on whitefly crawlers. Biocontrol 57(4):533–539

    Article  Google Scholar 

  • Van Rijn PCJ, Van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83(10):2664–2679

    Article  Google Scholar 

  • Vassiliou VA, Kitsis PC, Papadoulis GT (2012) New records of phytoseiid mites (Acari: Phytoseiidae) from Cyprus. Int J Acarol 38(3):191–196

    Article  Google Scholar 

  • Walter DE (1992) Leaf surface structure and the distribution of Phytoseius mites (Acarina: Phytoseiidae) in south-eastern Australian forests. Aust J Zool 40(6):593–603

    Article  Google Scholar 

  • Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol 41:101–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Farid Faraji (MITOX Consultants) is acknowledged for the identification of the phytoseiid species. The detailed and constructive comments of two anonymous reviewers resulted in considerable improvement of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Broufas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappas, M.L., Xanthis, C., Samaras, K. et al. Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests. Exp Appl Acarol 61, 387–401 (2013). https://doi.org/10.1007/s10493-013-9711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9711-9

Keywords

Navigation