Skip to main content
Log in

Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC50 estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R o ) in a concentration-dependent manner and their EC50s were equivalent to less than LC7. Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amano H, Ishii Y, Kobori Y (2004) Pesticide susceptibility of two dominant phytoseiid mites, Neoseiulus californicus and N. womersleyi, in conventional Japanese fruit orchards (Gamasina: Phytoseiidae). J Acarol Soc Jpn 13:65–70

    Article  Google Scholar 

  • Caswell H (1996) Analysis of life-table response experiments II. Alternative parameterizations for size- and stage-structured models. Ecol Model 88:73–82

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, UK

    Google Scholar 

  • Cho JR, Kim YJ, Ahn YJ, Yoo JK, Lee JO (1995) Monitoring of acaricide resistance in field-collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean J Appl Entomol 34:40–45

    Google Scholar 

  • Dent D (2000) Insect pest management. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Gentile JH, Gentile SM, Hairston NG Jr, Sullivan BK (1982) The use of life-tables for evaluating the chronic toxicity of pollutants to Mysidopsis bahia. Hydrobiol 93:179–187

    Article  CAS  Google Scholar 

  • Greco NM, Liljesthrom GG, Sanchez NE (1999) Spatial distribution and coincidence of Neoseiulus californicus and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) on strawberry. Exp Appl Acarol 23:567–580

    Article  Google Scholar 

  • Greco NM, Sanchez NE, Liljesthrom GG (2005) Neoseiulus californicus (Acari: Phytoseiidae) as a potential control agent of Tetranychus urticae (Acari: Tetranychidae): effect of pest/predator ratio on pest abundance on strawberry. Exp Appl Acarol 37:57–66

    Article  PubMed  CAS  Google Scholar 

  • Haanstra L, Oude Voshaar JH, Doelman P (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–297

    Article  CAS  Google Scholar 

  • Hamedi N, Fathipour Y, Saber M (2010) Sublethal effects of fenpyroximate on life table parameters of the predatory mite Phytoseius plumifer. Biocontrol 55:271–278

    Article  CAS  Google Scholar 

  • Helle W, Sabelis MW (1985) Spider mites: their biology, natural enemies, and control, vol 1B. Elsevier, Amsterdam

    Google Scholar 

  • Hirata K, Kawamura Y, Kuno M, Igarasgi H (1995) Development of a new acaricide, pyridaben. J Pestic Sci 20:177–179

    CAS  Google Scholar 

  • Hollingworth RM, Ahammadsahib KI (1995) Inhibitors of respiratory complex I: mechanisms, pesticidal actions and toxicology. Rev Pestic Toxicol 3:277–302

    CAS  Google Scholar 

  • Hoy MA, Cave FE (1985) Laboratory evaluation of avermectin as a selective acaricide for use with Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Exp Appl Acarol 1:139–152

    Article  CAS  Google Scholar 

  • Jung C, Kim SY, Lee S-W, Lee J-H (2003) Phytoseiid mites (Acari: Phytoseiidae) from Korean apple orchards and their ecological notes. Korean J App Entomol 42:195–196 (in Korean with English summary)

    Google Scholar 

  • Jung C, Han S, Lee J-H (2004) Release strategies of Amblyseius womersleyi and population dynamics of Amblyseius womersleyi and Tetranychus urticae: II. Test of two release rates on apple. Appl Entomol Zool 39:477–484

    Article  Google Scholar 

  • Kim DI, Lee SC, Paik CH, Kim SS, Ma KC (1997) Population fluctuation of Tetranychus kanzawai and their natural enemies and related susceptibility of some pesticides to Amblyseius womersleyi and T. kanzawai. J Kor Tea Soc 3:83–93

    Google Scholar 

  • Kim M, Shin D, Suh E, Cho K (2004) An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay. Appl Entomol Zool 39:401–409

    Article  CAS  Google Scholar 

  • Kim SS, Yoo SS (2002) Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the twospotted spider mite, Tetranychus urticae. Biocontrol 47:563–573

    Article  CAS  Google Scholar 

  • Kim YJ, Lee HS, Lee SW, Kim GH, Ahn YJ (1999) Toxicity of tebufenpyrad to Tetranychus urticae (Acari: Tetranychidae) and Amblyseius womersleyi (Acari: Phytoseiidae) under laboratory and field conditions. J Econ Entomol 92:187–192

    CAS  Google Scholar 

  • King CE (1966) Food, age, and the dynamics of a laboratory population of rotifers. Ecology 48:111–128

    Article  Google Scholar 

  • Kogan M (1986) Ecological theory and integrated pest management practice. Wiley, New York, pp 362

  • Kwon DH, Song DY, Kang S, Ahn JJ, Lee J-H et al (2010) Residual contact vial bioassay for the on-site detection of acaricide resistance in the two-spotted spider mite. J Asia Pac Entomol 13:333–337

    Google Scholar 

  • Kwon YH, Yang JO, Oh JH, Noh DJ, Yoon C, Kim GH (2008) Changes of feeding behavior of Sweetpotato Whitefly, Bemisia tabaci, correlated with the residual of emamectin benzoate and pyridaben. Korean J Pestic Sci 12:397–402 (in Korean with English summary)

    Google Scholar 

  • Laing JE (1968) Life history and life table of Phytoseiulus persimilis Athias-Henriot. Acarologia 10:578–588

    PubMed  CAS  Google Scholar 

  • Lee J-H, Ahn JJ (2000) Temperature effects on development, fecundity, and life table parameters of Amblyseius womersleyi (Acari: Phytoseiidae). Environ Entomol 29:265–271

    Article  CAS  Google Scholar 

  • Lee Y-S, Song M-H, Ahn K-S, Lee K-Y, Kim J-W, Kim G-H (2003) Monitoring of acaricide resistance in two-spotted spider mite (Tetranychus urticae) populations from rose greenhouses in Korea. J Asia Pac Entomol 6:91–96

    Article  Google Scholar 

  • LeOra Software (1987) POLO-PC. A user’s guide to probit or logit analysis. Berkeley

  • Levin L, Caswell H, Bridges T, Dibacco C, Cabrera D, Plaia G (1996) Demographic responses of estuarine polychaetes to sewage, algal, and hydrocarbon additions: life-table response experiments. Ecol Appl 6:1295–1313

    Article  Google Scholar 

  • Malais M, Ravensberg WJ (1992) Knowing and recognizing. The biology of glasshouse pests and their natural enemies. Koppert Biological Systems, The Netherlands

    Google Scholar 

  • Malezieux S, Lapchin L, Pralavorio M, Moulin JC, Fournier D (1992) Toxicity of pesticide residues to a beneficial arthropod, Phytoseiulus persimilis (Acari: Phytoseiidae). J Econ Entomol 85:2077–2081

    CAS  Google Scholar 

  • Oatman ER, McMurtry JA, Gilstrap FE, Voth V (1977a) Effect of Amblyseius californicus, Phytoseiulus persimilis, and Typhlodromus occidentalis on the twospotted spider mite on strawberry in southern California. J Econ Entomol 70:45–47

    Google Scholar 

  • Oatman ER, McMurtry JA, Gilstrap FE, Voth V (1977b) Effect of releases of Amblyseius californicus on the twospotted spider mite on strawberry in Southern California. J Econ Entomol 70:638–640

    Google Scholar 

  • Park HJ, Park NJ, Lee KI (2005) A convenient synthesis of fenpyroximate. Korean J Pestic Sci 9:274–277

    Google Scholar 

  • Rhodes EM, Liburd OE, Kelts C, Rondon SI, Francis RR (2006) Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (bifenazate) for control of twospotted spider mites in strawberrie. Exp Appl Acarol 39:213–255

    Article  PubMed  CAS  Google Scholar 

  • Roush RT (1989) Designing resistance management programs: how can you choose? Pestic Sci 26:423–441

    Article  CAS  Google Scholar 

  • Sáenz-de-Cabezón Irigaray FJ, Zalom FG, Thompson PB (2007) Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biol Control 40:153–159

    Article  Google Scholar 

  • SAS Institute (1996) SAS/STAT guide for personal computers, version 6.3 ed. SAS Institute, Cary

    Google Scholar 

  • Spollen KM, Isman MB (1996) Acute and sublethal effects of a neem insecticide on the commercial biological control agents Phytoseiulus persimilis and Amblyseius cucumeris (Acari: Phytoseiidae) and Aphidoletes aphidimyza (Diptera: Cecidomyiidae). J Econ Entomol 89:1379–1386

    CAS  Google Scholar 

  • Stark JD, Tanigoshi L, Bounfour M, Antonelli A (1997) Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotox Environ Safe 37:273–279

    Article  CAS  Google Scholar 

  • Stavrinides MC, Mills NJ (2009) Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biol Control 48:267–273

    Article  CAS  Google Scholar 

  • Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583

    Article  PubMed  CAS  Google Scholar 

  • Suh E, Koh S-H, Lee J-H, Shin K-I, Cho K (2006) Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetranychus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Exp Appl Acarol 38:151–165

    Article  PubMed  Google Scholar 

  • Toyoshima S, Amano H (1998) Effect of prey density on sex ratio of two predacious mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Exp Appl Acarol 22:709–723

    Article  Google Scholar 

  • Van Leeuwen CJ, Luttmer WJ, Griffioen PS (1985) The use of cohorts and populations in chronic toxicity studies with Daphnia magna; a cadmium example. Ecotox Environ Safe 9:26–39

    Article  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2009) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23–31

    Article  PubMed  Google Scholar 

  • Villanueva-Jiménez JA, Hoy MA (1998) Toxicity of pesticides to the citrus leaf miner and its parasitoid Ageniaspis citricola evaluated to assess their suitability for an IPM program in citrus nurseries. Biocontrol 43:357–388

    Article  Google Scholar 

  • Walthall WK, Stark JD (1997) A comparison of acute mortality and population growth rate as endpoints of toxicological effect. Ecotox Environ Safe 37:45–52

    Article  CAS  Google Scholar 

  • Zhang ZQ, Sanderson JP (1995) Twospotted spider mite (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) on greenhouse roses: spatial distribution and predator efficacy. J Econ Entomol 88:352–357

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Ministry of Education and Human Resources Development (Grant No. R0508741) in Korea (2005) to K. Cho and from Korea Food and Drug Administration (2010) to M.-G. Lee, Y. J. Bae and K. Cho. Also, this work was supported in part by the research fund of Hankuk University of Foreign Studies to K–I Shin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kijong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JJ., Kim, M., Lee, JH. et al. Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae). Exp Appl Acarol 54, 243–259 (2011). https://doi.org/10.1007/s10493-011-9435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-011-9435-7

Keywords

Navigation