Skip to main content
Log in

Robust model estimation by using preference analysis and information theory principles

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Robust model estimation aims to estimate the parameters of a given geometric model, and then separate the outliers and inliers belonging to different model instances into different groups based on the estimated parameters. Robust model estimation is a fundamental task in computer vision and artificial intelligence, and mainly contains two components: data sampling for generating hypotheses and model selection for segmenting data. Over the past decade, a number of guided data sampling algorithms and model selection algorithms have been proposed separately. This results in that the performance of the robust model estimation method is still unsatisfactory. In this paper, we first present a comprehensive study of the above algorithms, by analyzing and comparing them. Then, we propose an efficient and effective robust model estimation method by using preference analysis and information theory principles. Specifically, we first employ our previously proposed data sampling algorithm based on preference analysis to sample data subsets for generating promising hypotheses. Then, we build a discriminative sparse affinity matrix based on the generated hypotheses by using information theory principles. Finally, we segment data by conducting a spectral clustering on the discriminative affinity matrix. Experimental results on the AdelaideRMF and the Hopkins 155 datasets show that the proposed method achieves higher segmentation accuracies than several state-of-the-art model estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  2. Wang H, Chin T-J, Suter D (2012) Simultaneously fitting and segmenting multiple-structure data with outliers. IEEE Trans. Pattern Anal. Mach. Intell. 34(6):1177–1192

    Article  Google Scholar 

  3. Lin S, Luo H, Yan Y, Xiao G, Wang H (2022) Co-clustering on bipartite graphs for robust model fitting. IEEE Transactions on Image Processing 31:6605–6620

    Article  Google Scholar 

  4. Magri, L., Leveni, F., Boracchi, G.: MultiLink: Multi-class structure recovery via agglomerative clustering and model selection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1853–1862 (2021)

  5. Barath D, Matas J (2021) Graph-cut ransac: Local optimization on spatially coherent structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4961–4974

    Google Scholar 

  6. Sun, Y., Wu, F.: Desac: differential evolution sample consensus algorithm for image registration. Applied Intelligence, 1–24 (2022)

  7. Zhang, Y., Yi, J., Chen, Y., Dai, Z., Han, F., Cao, S.: Pose estimation for workpieces in complex stacking industrial scene based on rgb images. Applied Intelligence, 1–13 (2022)

  8. Wu J, Li K, Zhang Q, An W, Jiang Y, Ping X, Chen P (2017) Iterative ransac based adaptive birth intensity estimation in gm-phd filter for multi-target tracking. Signal Processing 131:412–421

    Article  Google Scholar 

  9. Djurović I (2017) QML-RANSAC: PPS and FM signals estimation in heavy noise environments. Signal Processing 130:142–151

    Article  Google Scholar 

  10. Lai T, Fujita H, Yang C, Li Q, Chen R (2019) Robust model fitting based on greedy search and specified inlier threshold. IEEE Trans. Ind. Electron. 66(10):7956–7966

    Article  Google Scholar 

  11. Kanazawa, Y., Kawakami, H.: Detection of planar regions with uncalibrated stereo using distributions of feature points. In: Proc. British Machine Vision Conference, pp. 247–256 (2004)

  12. Ni, K., Jin, H., Dellaert, F.: GroupSAC: Efficient consensus in the presence of groupings. In: Proc. IEEE Int. Conf. Comput. Vis., pp. 2193–2200 (2009)

  13. Barath, D., Noskova, J., Ivashechkin, M., Matas, J.: MAGSAC++, a fast, reliable and accurate robust estimator. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1304–1312 (2020)

  14. Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 220–226 (2005)

  15. Fragoso, V., Turk, M.: SWIGS: A swift guided sampling method. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2770–2777 (2013)

  16. Tennakoon R, Sadri A, Hoseinnezhad R, Bab-Hadiashar A (2018) Effective sampling: Fast segmentation using robust geometric model fitting. IEEE Trans. Image Process. 27(9):4182–4194

    Article  MathSciNet  MATH  Google Scholar 

  17. Lai T, Chen R, Yang C, Li Q, Fujita H, Sadri A, Wang H (2020) Efficient robust model fitting for multistructure data using global greedy search. IEEE Trans. Cybern. 50(7):3294–3306

    Article  Google Scholar 

  18. Chin T-J, Yu J, Suter D (2012) Accelerated hypothesis generation for multistructure data via preference analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34(4):625–638

    Article  Google Scholar 

  19. Lai T, Wang H, Yan Y, Wang D-H, Xiao G (2016) Rapid hypothesis generation by combining residual sorting with local constraints. Multimed Tools and Applications 75(12):7445–7464

    Article  Google Scholar 

  20. Lai T, Wang H, Yan Y, Chin T-J, Zheng J, Li B (2020) Accelerated guided sampling for multistructure model fitting. IEEE Trans. Cybern. 50(10):4530–4543

    Article  Google Scholar 

  21. Zuliani, M., Kenney, C.S., Manjunath, B.: The MultiRANSAC algorithm and its application to detect planar homographies. In: Proc. IEEE International Conference on Image Processing, vol. 3, pp. 153–156 (2005)

  22. Tennakoon R, Bab-Hadiashar A, Cao Z, Hoseinnezhad R, Suter D (2016) Robust model fitting using higher than minimal subset sampling. IEEE Trans. Pattern Anal. Mach. Intell. 38(2):350–362

    Article  Google Scholar 

  23. Li J (2021) A practical o(n2) outlier removal method for correspondence-based point cloud registration. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(8):3926–3939

    Google Scholar 

  24. Li J, Hu Q, Ai M, Wang S (2021) A geometric estimation technique based on adaptive m-estimators: Algorithm and applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:5613–5626

    Article  Google Scholar 

  25. Lai T, Wang H, Chin TJ, Zhao WL (2017) Motion segmentation via a sparsity constraint. IEEE Trans. Intell. Transp. Syst. 18(4):973–983

    Article  Google Scholar 

  26. Xu X, Cheong LF, Li Z (2021) 3D rigid motion segmentation with mixed and unknown number of models. IEEE Trans. Pattern Anal. Mach. Intell. 43(1):1–16

    Article  Google Scholar 

  27. Bab-Hadiashar A, Suter D (1999) Robust segmentation of visual data using ranked unbiased scale estimate. Robotica 17(06):649–660

    Article  Google Scholar 

  28. Lee KM, Meer P, Park RH (1998) Robust adaptive segmentation of range images. IEEE Trans. Pattern Anal. Mach. Intell. 20(2):200–205

    Article  Google Scholar 

  29. Lin, S., Xiao, G., Yan, Y., Suter, D. and Wang, H.: Hypergraph optimization for multi-structural geometric model fitting. In: Proc. the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8730–8737 (2019)

  30. Tiwari, L., Anand, S. and Mittal, S.: Robust multi-model fitting using density and preference analysis. In: Proc. Asian Conference on Computer Vision, pp. 308–323 (2017)

  31. Wong HS, Chin T-J, Yu J, Suter D (2013) Mode seeking over permutations for rapid geometric model fitting. Pattern recognition 46(1):257–271

    Article  Google Scholar 

  32. Tron, R., Vidal, R.: A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 1–8 (2007)

  33. Barath, D., Matas, J.: Progressive-X: Efficient, anytime, multi-model fitting algorithm. In: Proc. IEEE Int. Conf. Comput. Vis., pp. 3780–3788 (2019)

  34. Yang J, Chen Y, Rahardja S (2023) Neighborhood representative for improving outlier detectors. Information Sciences 625:192–205

  35. Tan X, Yang J, Rahardja S (2022) Sparse random projection isolation forest for outlier detection. Pattern Recognition Letters 163:65–73

    Article  Google Scholar 

  36. Magri, L., Fusiello, A.: Multiple model fitting as a set coverage problem. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 3318–3326 (2016)

  37. Pham T-T, Chin T-J, Yu J, Suter D (2014) The random cluster model for robust geometric fitting. IEEE Trans. Pattern Anal. Mach. Intell. 36(8):1658–1671

    Article  Google Scholar 

  38. Delong A, Osokin A, Isack HN, Boykov Y (2012) Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 96(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  39. Barath, D., Matas, J.: Multi-class model fitting by energy minimization and mode-seeking. In: Proc. Eur. Conf. Comput. Vis., pp. 221–236 (2018)

  40. Wang H, Xiao G, Yan Y, Suter D (2019) Searching for representative modes on hypergraphs for robust geometric model fitting. IEEE Trans. Pattern Anal. Mach. Intell. 41(3):697–711

    Article  Google Scholar 

  41. Yu, J., Chin, T.-J., Suter, D.: A global optimization approach to robust multi-model fitting. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 2041–2048 (2011)

  42. Toldo, R., Fusiello, A.: Robust Multiple Structures Estimation with J-Linkage. In: Proc. Eur. Conf. Comput. Vis., pp. 537–547 (2008)

  43. Lin S, Wang X, Xiao G, Yan Y, Wang H (2021) Hierarchical representation via message propagation for robust model fitting. IEEE Trans. Ind. Electron. 68(9):8582–8592

    Article  Google Scholar 

  44. Elhamifar E, Vidal R (2013) Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11):2765–2781

    Article  Google Scholar 

  45. Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (gpca). IEEE Trans. Pattern Anal. Mach. Intell. 27(12):1945-1959

    Article  Google Scholar 

  46. Isack H, Boykov Y (2014) Energy based multi-model fitting & matching for 3d reconstruction. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp 1146–1153

  47. Guo H, Lu Y, Chen H, Luo H, Xiao G, Zhang H, Wang H (2022) Motion consistency guided robust geometric model fitting with severe outliers. IEEE Trans. Ind. Electron. 69(4):4065–4075

    Article  Google Scholar 

  48. Tran QH, Chin TJ, Chojnacki W, Suter D (2014) Sampling minimal subsets with large spans for fobust estimation. Int. J. Comput. Vis. 106(1):93–112

    Article  MathSciNet  MATH  Google Scholar 

  49. Lai, T., Liu, Y., Chang, J., Wei, L., Li, Z., Fujita, H.: Guided sampling for multistructure data via neighborhood consensus and residual sorting. IEEE Transactions on Circuits and Systems for Video Technology (2022)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62172197, and Grant 61972187, in part by the Natural Science Foundation of Fujian Province under Grant 2020J01825, Grant 2020J02024 and Grant 2021J011017, in part by the Fuzhou Science and Technology Project under Grant 2022-R-001, and in part by the National Key R &D Program of China under Grant 2022YFC3302200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Lai.

Ethics declarations

Competing interests

The authors declare no conflict of interest. The datasets generated during and/or analysed during the current study are available in https://cs.adelaide.edu.au/\(\sim \)ssl/adelaidermf and http://www.vision.jhu.edu/data/hopkins155/.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, T., Wang, W., Liu, Y. et al. Robust model estimation by using preference analysis and information theory principles. Appl Intell 53, 22363–22373 (2023). https://doi.org/10.1007/s10489-023-04697-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04697-z

Keywords

Navigation