Skip to main content
Log in

Multi-template global re-detection based on Gumbel-Softmax in long-term visual tracking

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In long-term visual tracking, target occlusion and out-of-view are common problems that lead to target loss. Adding a re-detection module to the short-term tracking algorithm is a general solution. However, the existing re-detection methods have limited accuracy, a large amount of calculation, and serious error accumulation, which seriously affect the algorithm’s long-term tracking ability. This paper proposes a flexible and accurate global re-detection module that enhances long-term tracking performance of the algorithm while improving re-detection speed. The proposed method innovatively uses three templates for global sampling to improve the re-detection accuracy. Then, Gumbel-Softmax is introduced into the re-detection module for accurate sampling, and a less number of target candidate boxes are output, which reduces the amount of computation. Finally, color feature is added to assist cosine similarity to locate the final target position more accurately. Four tracking algorithms are selected as benchmark algorithms (STMTrack, KeepTrack, SuperDiMP, and DiMP). The experimental results on five datasets (UAV123, UAV20L, LaSOT, VOT2018-LT, and VOT2020-LT) show that the long-term tracking ability of these algorithms can be effectively improved after adding the re-detection module. Especially on UAV20L, the accuracy and success rate of the improved STMTrack can be increased by 15.6% and 11.6% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ye M, Shen J, Lin G, Xiang T, Shao L, Hoi SCH (2021) Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell 44(6):2872–2893

    Article  Google Scholar 

  2. Liu Q, Chu Q, Liu B, Yu N (2020) GSM: graph similarity model for multi-object tracking. In: Proc 29th int joint conf artif intell. IJCAI, pp 530–536

  3. Wu X, Xu J, Zhu Z, Zhang Q, Tang S, Liang M, Cao B (2022) Correlation filter tracking algorithm based on spatial-temporal regularization and context awareness. Appl Intell:1–12

  4. Xiao D, Tan K, Wei Z, Zhang G (2022) Siamese block attention network for online update object tracking. Appl Intell:1–13

  5. Li B, Yan J, Wu W, Zhu Z, Hu X (2018) High performance visual tracking with siamese region proposal network. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 8971–8980

  6. Li B, Wu W, Wang Q, Zhang F, Xing J, Yan J (2019) Siamrpn++: evolution of siamese visual tracking with very deep networks. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 4282–4291

  7. Danelljan M, Bhat G, Khan FS, Felsberg M (2019) Atom: accurate tracking by overlap maximization. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 4660–4669

  8. Chen Z, Zhong B, Li G, Zhang S, Ji R (2020) Siamese box adaptive network for visual tracking. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 6668–6677

  9. Zhang J, Liu Y, Liu H, Wang J, Zhang Y (2022) Distractor-aware visual tracking using hierarchical correlation filters adaptive selection. Appl Intell 52(6):6129–6147

    Article  Google Scholar 

  10. Cheng S, Zhong B, Li G, Liu X, Tang Z, Li X, Wang J (2021) Learning to filter: siamese relation network for robust tracking. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 4421–4431

  11. Guo D, Shao Y, Cui Y, Wang Z, Zhang L, Shen C (2021) Graph attention tracking. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 9543–9552

  12. Wang X, Chen Z, Tang J, Luo B, Wang Y, Tian Y, Wu F (2021) Dynamic attention guided Multi-Trajectory analysis for single object tracking. IEEE Trans Circuits Syst Video Technol 31(12):4895–4908

    Article  Google Scholar 

  13. Zhang Z, Peng H, Fu J, Li B, Hu W (2020) Ocean: object-aware anchor-free tracking. In: Proc eur conf comput vis. Cham, pp 771–787

  14. Zhou Z, Li X, Zhang T, Wang H, He Z (2022) Object tracking via Spatial-Temporal memory network. IEEE Trans Circuits Syst Video Technol 32(5):2976–2989

    Article  Google Scholar 

  15. Zhu Z, Wang Q, Li B, Wu W, Yan J, Hu W (2018) Distractor-aware siamese networks for visual object tracking. In: Proc eur conf comput vis. Cham, pp 101–117

  16. Zhang Y, Wang D, Wang L, Qi J, Lu H (2018) Learning regression and verification networks for long-term visual tracking. arXiv:1809.04320

  17. Yan B, Zhao H, Wang D, Lu H, Yang X (2019) ‘Skimming-Perusal’ tracking: a framework for real-time and robust long-term tracking. In: Proc IEEE/CVF int conf comput vis. IEEE, pp 2385–2393

  18. Voigtlaender P, Luiten J, Torr PHS, Leibe B (2020) Siam r-cnn: visual tracking by re-detection. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 6578–6588

  19. Dai K, Zhang Y, Wang D, Li J, Lu H, Yang X (2020) High-performance long-term tracking with meta-updater. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 6298–6307

  20. Choi S, Lee J, Lee Y, Hauptmann A (2020) Robust long-term object tracking via improved discriminative model prediction. In: Proc eur conf comput vis. Cham, pp 602–617

  21. Tang F, Ling Q (2020) Contour-aware long-term tracking with reliable re-detection. IEEE Trans Circuits Syst Video Technol 30(12):4739–4754

    Article  Google Scholar 

  22. Wang N, Zhou W, Li H (2019) Reliable re-detection for long-term tracking. IEEE Trans Circuits Syst Video Technol 29(3):730–743

    Article  Google Scholar 

  23. Mueller M, Smith N, Ghanem B (2016) A benchmark and simulator for uav tracking. In: Proc eur conf comput vis. Cham, pp 445–461

  24. Fan H, Lin L, Yang F et al (2019) Lasot: a high-quality benchmark for large-scale single object tracking. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 5374–5383

  25. Lukežič A, Zajc LČ, Vojíř T, Matas J, Kristan M (2018) Now you see me: evaluating performance in long-term visual tracking. arXiv:1804.07056

  26. Kristan M, Leonardis A, Matas J et al (2020) The eighth visual object tracking VOT2020 challenge results. In: Proc eur conf comput vis. Cham, pp 547–601

  27. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 2411–2418

  28. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Zajc LC (2018) The sixth visual object tracking vot2018 challenge results. In: Proc eur conf comput vis workshops. Cham, pp 0–0

  29. Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(5):1409–1422

    Google Scholar 

  30. Ma C, Yang X, Zhang C, Yang M (2015) Long-term correlation tracking. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 5388–5396

  31. Hong Z, Chen Z, Wang C, Mei X, Prokhorov D, Tao D (2015) Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 749–758

  32. Ma C, Huang JB, Yang X, Yang M (2018) Adaptive correlation filters with long-term and short-term memory for object tracking. Int J Comput Vis 126:771–796

    Article  Google Scholar 

  33. Zhu G, Porikli F, Li H (2016) Beyond local search: tracking objects everywhere with instance-specific proposals. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 943–951

  34. Lukežič A, Zajc L, Vojíř T, Matas J, Kristan M (2018) Fucolot–a fully-correlational long-term tracker. In: Asian conf comput vis. Springer, pp 595–611

  35. Huang L, Zhao X, Huang K (2020) Globaltrack: a simple and strong baseline for long-term tracking. In: Proc AAAI conf artif intell. AIII, pp 11037–11044

  36. Cheng J, Wu Y, AbdAlmageed W, Natarajan P (2019) QATM: quality-aware template matching for deep learning. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 11553–11562

  37. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv:1312.6114

  38. Wang M, Liu Y, Huang Z (2017) Large margin object tracking with circulant feature maps. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 4021–4029

  39. Fu Z, Liu Q, Fu Z, Wang Y (2021) STMTrack: template-free visual tracking with space-time memory networks. In: Proc IEEE conf comput vis pattern recognit. IEEE, pp 13774–13783

  40. Mayer C, Danelljan M, Paudel DP, Gool LV (2021) Learning target candidate association to keep track of what not to track. arXiv:2103.16556

  41. Danelljan M, Bhat G (2019) PyTracking: visual tracking library based on PyTorch. https://github.com/visionml/pytracking

  42. Bhat G, Danelljan M, Gool LV, Timofte R (2019) Learning discriminative model prediction for tracking. In: Proc IEEE/CVF int conf comput vis. IEEE, pp 6182–6191

  43. Gavves E, Tao R, Gupta DK, Smeulders AWM (2021) Model decay in long-term tracking. In: IEEE 25th int conf pattern recognit. IEEE, pp 2685–2692

  44. Henriques JF, Caseiro R, Martins P, Batista J (2014) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  45. Sitaula C, Hossain MB (2021) Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl Intell 51:2850–2863

    Article  Google Scholar 

  46. Mateen M, Wen J, Song S, Huang Z (2018) Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 11(1):1

    Article  Google Scholar 

  47. Li C, Guo J, Guo C (2018) Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Proc Let 25(3):323–327

    Article  Google Scholar 

  48. Liu Y, Pan C, Bie M, Li J (2022) An efficient real-time target tracking algorithm using adaptive feature fusion. Vis Commun Image Represent 85:103505

    Article  Google Scholar 

  49. Bourouis S, Channoufi I, Alroobaea R, Rubaiee S, Andejany M, Bouguila N (2021) Color object segmentation and tracking using flexible statistical model and level-set. Multimed Tools Appl 80(4):5809–5831

    Article  Google Scholar 

  50. Yan B, Peng H, Fu J, Wang D, Lu H (2021) Learning spatio-temporal transformer for visual tracking. arXiv:2103.17154

  51. Zhao H, Yan B, Wang D, Qian X, Yang X, Lu H (2022) Effective local and global search for fast long-term tracking. IEEE Trans Pattern Anal Mach Intell 1:1–1

    Google Scholar 

  52. https://www.votchallenge.net/vot2018/result.html

  53. https://www.votchallenge.net/vot2019/result.html

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under grant no. 62072370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Ma.

Ethics declarations

Competing interests

This work is supported by the National Natural Science Foundation of China under grant no. 62072370. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Ma, J., Yu, W. et al. Multi-template global re-detection based on Gumbel-Softmax in long-term visual tracking. Appl Intell 53, 20874–20890 (2023). https://doi.org/10.1007/s10489-023-04584-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04584-7

Keywords

Navigation