Skip to main content
Log in

OCR-RTPS: an OCR-based real-time positioning system for the valet parking

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Obtaining the position of ego-vehicle is a crucial prerequisite for automatic control and path planning in the field of autonomous driving. Most existing positioning systems rely on GPS, RTK, or wireless signals, which are arduous to provide effective localization under weak signal conditions. This paper proposes a real-time positioning system based on the detection of the parking numbers as they are unique positioning marks in the parking lot scene. It does not only can help with the positioning with open area, but also run independently under isolation environment. The result tested on both public datasets and self-collected dataset show that the system outperforms others in both performances and applies in practice. In addition, the code and dataset will release later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Magno M, Rickli S, Quack J, Brunecker O, Benini L (2018) Combining lora and rtk to achieve ahigh precision self-sustaining geo-localization system. In: 17thACM/IEEE International Conference on Information Process-ing in Sensor Networks (IPSN), pp 160–161

  2. He X, Pan S, Gao W, et al. (2022) LiDAR-Inertial-GNSS fusion positioning system in urban environment: local accurate registration and global drift-free[J]. Remote Sens 14(9):2104

    Article  Google Scholar 

  3. Liu J, Guo G (2021) Vehicle localization during GPS outages with extended Kalman filter and deep learning[J]. IEEE Trans Instrum Meas 70:1–10

    Article  Google Scholar 

  4. El-Mowafy A, Kubo N (2017) Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer[J]. Meas Sci Technol 28(5):055102

    Article  Google Scholar 

  5. Dinh-Van N, Nashashibi F, Thanh-Huong N, Castelli E (2017) Indoor intelligent vehicle localization usingwifi received signal strength indicator. In: 2017 IEEE MTT-SInternational conference on microwaves for intelligent mobility (ICMIM). IEEE, pp 3–36

  6. Zhu R, Wang Y, Cao H, Yu B, Gan X, Huang L, Zhang H, Li S, Jia H, Chen J (2020) Rtk/pseudolite/lahde/imu-pdr integrated pedes-trian navigation system for urban and indoor environments. Sensors 20:1791

    Article  Google Scholar 

  7. Yang Y, Xia C, Deng X et al (2020) HeLPS: Heterogeneous LiDAR-based positioning system for autonomous vehicle[C]. In: IECON 2020 The 46th annual conference of the ieee industrial electronics society. IEEE, pp 618–625

  8. Nagy B, Benedek C (2018) Real-time point cloudalignment for vehicle localization in a high resolution 3d map. In: Proceedings of the european conference on computer vision (ECCV) workshops

  9. Jiang W, Yu Y, Zong K, et al. (2021) A seamless train positioning system using a Lidar-aided hybrid integration methodology[J]. IEEE Trans Veh Technol 70(7):6371–6384

    Article  Google Scholar 

  10. Saeed M, Gufran Khan M, Zulfiqar A, et al. (2021) Development of ANPR framework for pakistani vehicle number plates using object detection and OCR[J]. Complexity, 2021

  11. Kalpana AV, Kavitharani K, Nandhini M (2021) OCR-based automatic toll collection and theft vehicle detection using IoT[M]. In: Next generation of internet of things. Springer, Singapore, pp 185–197

  12. Shashidhar R, Manjunath AS, Kumar RS et al (2021) Vehicle number plate detection and recognition using YOLO-V3 and OCR Method[C]. In: 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE, pp 1–5

  13. Liu Y, Chen H, Shen C, He T, Jin L, Wang L (2020) Abcnet: Real-time scene text spottingwith adaptive bezier-curve network. In: Proceedings of theIEEE conference on computer vision and pattern recognition(CVPR), pp 9809–9818

  14. Xing L, Tian Z, Huang W, Scott MR (2019) Convolutional character networks. In: Proceedings of theIEEE international conference on computer vision (ICCV), pp 9126–9136

  15. Zhang C, Liang B, Huang Z, En M, Han J, Ding E, Ding X (2019) Look more thanonce: an accurate detector for text of arbitrary shapes. In: Proceedings of the IEEE conference on computer vision andPattern Recognition (CVPR), pp 10552–10561

  16. Li B, He M, Wu W et al (2018) Computation offloading algorithm for arbitrarily divisible applications in mobile edge computing environments: an OCR case[J]. Sustainability 10(5): 1611

    Article  Google Scholar 

  17. Zhong D, Lyu S, Shivakumara P et al (2022) Text proposals with location-awareness-attention network for arbitrarily shaped scene text detection and recognition[J]. Expert Systems with Applications, pp 117564

  18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceed-ings of the IEEE conference on computer vision and PatternRecognition (CVPR), pp 770– 778

  19. Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid net-works for object detection. In: Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR), pp 2117–2125

  20. Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Ann Intern Med 110(11):916–921

    Article  Google Scholar 

  21. Radmehr N, Mehrandezh M, Chan C (2019) Homography-based vehicle pose estimation from a single im-age by using machine-learning for wheel-region and tire-roadcontact point detection. In: International conference on SmartMultimedia. Springer, pp 169–179

  22. Bell D, Xiao W, James P (2020) Accurate vehicle speed estima-tion from monocular camera footage. ISPRS Annals of Pho-togrammetry, Remote Sensing and Spatial Information Sciences, vol 5(2)

  23. Jadhav T, Singh K, Abhyankar A (2018) Volu-metric 3d reconstruction of real objects using voxel mappingapproach in a multiple-camera environment. Turkish Journal of Electrical Engineering and Computer Sciences 26(2):755–767

    Article  Google Scholar 

  24. Zafari F, Gkelias A, Leung KK (2019) A sur-vey of indoor localization systems and technologies. IEEE Communications Surveys and Tutorials 21(3):2568–2599

    Article  Google Scholar 

  25. Tian Z, Huang W, He T et al (2016) Detecting text in natural image with connectionist text proposal network[C]. In: European conference on computer vision. Springer, Cham, pp 56–72

  26. Ziegler J, Bender P, Schreiber M et al (2014) Making bertha drive—an autonomous journey on a historic route[J]. IEEE Intell Transp Syst Mag 6(2):8–20

    Article  Google Scholar 

  27. Posso-Bautista B, Bacca-Cortés EB, Caicedo-Bravo E (2022) Autonomous vehicle localization method based on an extended Kalman filter and geo-referenced landmarks[J]. Revista de Investigación Desarrollo e Innovació,n 12(1):549–564

    Google Scholar 

  28. Shi B, Bai X, Belongie S (2017) Detecting oriented text in natural images by linking segments[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2550–2558

  29. Zhou X, Yao C, Wen H et al (2017) East: an efficient and accurate scene text detector[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5551–5560

  30. Wang W, Xie E, Li X et al (2019) Shape robust text detection with progressive scale expansion network[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9336–9345

  31. Liao M, Wan Z, Yao C et al (2020) Real-time scene text detection with differentiable binarization. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, no 07, pp 11474–11481

  32. Li H, Wang P, Shen C (2017) Towards end-to-end text spotting with convolutional recurrent neural networks[C]. In: Proceedings of the IEEE international conference on computer vision, pp 5238–5246

  33. Liu X, Liang D, Yan S et al (2018) Fots: Fast oriented text spotting with a unified network[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5676–5685

  34. Xing L, Tian Z, Huang W et al (2019) Convolutional character networks[C]. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9126–9136

  35. Ssekidde P, Steven Eyobu O, Han DS et al (2021) Augmented CWT features for deep learning-based indoor localization using WiFi RSSI data[J]. Appl Sci 11(4):1806

    Article  Google Scholar 

  36. Yang R, Yang X, Wang J, et al (2021) Decimeter level indoor localization using WiFi channel state information[J]. IEEE Sensors Journal

  37. Bahl P, Padmanabhan VN (2000) RADAR: an in-building RF-based user location and tracking system[C]. In: Proceedings IEEE INFOCOM 2000. Conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies (Cat. No. 00CH37064). Ieee, vol 2, pp 775–784

  38. Polak L, Rozum S, Slanina M et al (2021) Received signal strength fingerprinting-based indoor location estimation employing machine learning[J]. Sensors 21(13):4605

    Article  Google Scholar 

  39. Retscher G, Leb A (2021) Development of a smartphone-based university library navigation and information service employing Wi-Fi location fingerprinting[J]. Sensors 21(2):432

    Article  Google Scholar 

  40. Lin Y, Dong W, Gao Y et al (2021) Sateloc: a virtual fingerprinting approach to outdoor lora localization using satellite images[J]. ACM Transactions on Sensor Networks (TOSN) 17(4):1–28

    Article  Google Scholar 

  41. Liu R, Wang J, Zhang B (2020) High definition map for automated driving: overview and analysis[J]. The Journal of Navigation 73(2):324–341

    Article  Google Scholar 

  42. Poggenhans F, Pauls JH, Janosovits J et al (2018) Lanelet2: a high-definition map framework for the future of automated driving[C]. In: 2018 21st inter-national conference on intelligent transportation systems (ITSC). IEEE, pp 1672–1679

  43. Ghallabi F, Mittet MA, Ghayath ELHAJS et al (2019) LIDAR-based high reflective landmarks (HRL) s for vehicle localization in an HD map[C]. In: IEEE intelligent transportation systems conference (ITSC). IEEE, pp 4412–4418

  44. Hirabayashi M, Sujiwo A, Monrroy A et al (2019) Traffic light recognition using high-definition map features[J]. Robot Auton Syst 111:62–72

    Article  Google Scholar 

  45. Kim C, Cho S, Sunwoo M et al (2018) Crowd-sourced mapping of new feature layer for high-definition map[J]. Sensors 18(12):4172

    Article  Google Scholar 

  46. Herrtwich R (2019) The evolution of the HERE HD live map at daimler. HERE Technologies[J]

  47. Qin F, Zuo T, Wang X (2021) Ccpos: Wifi fingerprint indoor positioning system based on cdae-cnn[J]. Sensors 21(4):1114

    Article  MathSciNet  Google Scholar 

  48. Zhu Y, Luo X, Guan S et al (2021) Indoor positioning method based on WiFi/Bluetooth and PDR fusion positioning[C]. In: 2021 13th international conference on advanced computational intelligence (ICACI). IEEE, pp 233–238

  49. Han K, Yu SM, Kim SL, et al. (2021) Exploiting user mobility for WiFi RTT positioning: a geometric approach[J]. IEEE Internet Things J 8(19):14589–14606

    Article  Google Scholar 

  50. Liu F, Liu J, Yin Y et al (2020) Survey on WiFi-based indoor positioning techniques[J]. IET communications 14(9):1372–1383

    Article  Google Scholar 

  51. Chen P, Liu F, Gao S et al (2019) Smartphone-based indoor fingerprinting localization using channel state information[J]. IEEE Access 7:180609–180619

    Article  Google Scholar 

  52. Li W, Chen Y, Asif M (2016) A Wi-Fi-based indoor positioning algorithm with mitigating the influence of NLOS[C]. In: 2016 8th IEEE international conference on communication software and networks (ICCSN). IEEE, pp 520–523

  53. Chen X, Song S, Xing J (2016) A ToA/IMU indoor positioning system by extended Kalman filter, particle filter and MAP algorithms[C]. In: 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, pp 1–7

  54. Nawaz H, Bozkurt A, Tekin I (2017) A novel power efficient asynchronous time difference of arrival indoor localization system using CC1101 radio transceivers[J]. Microw Opt Technol Lett 59(3):550–555

    Article  Google Scholar 

  55. Alkandari M, Basu D, Hasan SF (2017) A Wi-Fi based passive technique for speed estimation in indoor environments[C]. In: 2017 2nd Workshop on recent trends in telecommunications research (RTTR), pp 1–3

  56. Oguntala G, Obeidat H, Al Khambashi M et al (2017) Design framework for unobtrusive patient location recognition using passive RFID and particle filtering[C]. In: 2017 Internet technologies and applications (ITA). IEEE, pp 212–217

  57. Wang X, Wang X, Mao S (2017) CiFi: deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi[C]. In: IEEE international conference on communications (ICC). IEEE, pp 1–6

  58. Karatzas D, Shafait F, Uchida S et al (2013) ICDAR 2013 robust reading competition. In: Proc. IAPR Int. Conf. Document Analysis Recog, pp 1484–1493

  59. Karatzas D, Gomez-Bigorda L et al (2015) ICDAR 2015 competition on robust reading. In: Proc. IAPR Int. Conf. Document Analysis Recog., pp 1156–1160

  60. Chng CK, Liu Y, Sun Y, Ng CC, Luo C, Ni Z, Fang C, Zhang S, Han J, Ding E et al (2019) ICDAR2019 robust reading challenge on arbitrary-shaped text (RRC-ArT). In: Proc. IAPR Int. Conf. Document Analysis Recog

  61. Nayef N, Patel Y, Busta M, Chowdhury PN, Karatzas D, Khlif W, Matas J, Pal U, Burie JC, Liu CL et al (2019) ICDAR2019 robust reading challenge on multi-lingual scene text detection and recognition RRC-MLT-2019. In: Proc. IAPR Int. Conf. Document Analysis Recog

  62. Veit A, Matera T, Neumann L, Matas J, Belongie S (2016) Coco-text: Dataset and benchmark for text detection and recognition in natural images. arXiv: Comp. Res. Repository

  63. Liao M, Shi B, Bai X, Wang X, Liu W (2017) Textboxes: a fast text detector with a single deep neural network. In: Proc. AAAI Conf. Artificial Intell

  64. Lyu P, Liao M, Yao C, Wu W, Bai X (2018) Mask textspotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. In: Proc. Eur. Conf. Comp. Vis., pp 67–83

  65. Sun Y, Zhang C, Huang Z, Liu J, Han J, Ding E (2018) TextNet: irregular text reading from images with an end-to-end trainable network. In: Proc. Asian Conf. Comp. Vis., pp 83–99. Springer

  66. Li H, Wang P, Shen C (2019) Towards end-to-end text spotting in natural scenes. arXiv:Comp. Res. Repository

  67. Boukthir K, Qahtani AM, Almutiry O et al (2022) Reduced annotation based on deep active learning for arabic text detection in natural scene images[J]. Pattern Recogn Lett 157:42–48

    Article  Google Scholar 

  68. Qin S, Bissacco A, Raptis M, Fujii Y, Xiao Y (2019) Towards unconstrained end-to-end text spotting. In: Proc. IEEE Int. Conf. Comp. Vis

  69. Xing L, Tian Z, Huang W, Scott MR (2019) Convolutional Character Networks. In: Proc IEEE Int Conf Comp Vis

  70. Qin S, Chen L (2022) Arbitrary-shaped scene text detection with keypoint-based shape representation[J]. International Journal on Document Analysis and Recognition (IJDAR) 25(2):115–127

    Article  Google Scholar 

  71. Xia C, Shen Y, Yang Y et al (2022) Onboard Sensors-Based Self-Localization for Autonomous Vehicle With Hierarchical Map[J]. IEEE Transactions on Cybernetics

  72. Ramasamy P, Kabadi M (2022) An autonomous navigational system using GPS and computer vision for futuristic road traffic. Int J Electr Comput Eng 12(1):179

    Google Scholar 

  73. Wang W, Xie E, Li X et al (2021) Pan++: towards efficient and accurate end-to-end spotting of arbitrarily-shaped text[J]. IEEE Trans Pattern Anal Mach Intell 44(9):5349–5367

    Google Scholar 

  74. Zhu Y, Chen J, Liang L et al (2021) Fourier contour embedding for arbitrary-shaped text detection[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3123–3131

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizhang Wu.

Ethics declarations

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xinyuan Chen, Jizheng Wang, Xiaoquan Wang, Yuanzhu Gan, Muqing Fang and Tianhao Xu contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Chen, X., Wang, J. et al. OCR-RTPS: an OCR-based real-time positioning system for the valet parking. Appl Intell 53, 17920–17934 (2023). https://doi.org/10.1007/s10489-022-04362-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04362-x

Keywords

Navigation