Skip to main content
Log in

The water optimization algorithm: a novel metaheuristic for solving optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Metaheuristic algorithms (MAs) are used to find the answers to NP-Hard problems. NP-Hard problems basically refer to a set of optimization problems that cannot be solved in a polynomial at a time. MAs try to find the optimal or near-definitive answer in the shortest possible time to solve such problems and a set of optimization algorithms with different origins. These algorithms may be inspired by the natural sciences, physics, mathematics, and political science. However, a particular Metaheuristic algorithm may not provide the best answer to all problems. Each MA may have a better response to specific problems than other similar algorithms. Therefore, researchers will try to introduce and discover new algorithms to find optimal answers to a wide range of problems. In this paper, a new Meta-heuristic algorithm called the Water optimization algorithm (WAO) is presented. WAO is inspired by the chemical and physical properties of water molecules. The main idea of the proposed algorithm is to link water molecules together to find the optimal points. Factors such as particle motion, particle evaporation, and particle bonding have created a mechanism based on swarm intelligence and physical intelligence that inspired this algorithm to solve persistent problems. In this algorithm, answers are defined as a water molecule, a set of them is defined as a local answer. Water bonds provide the right move towards the optimal response. In evaluating the performance of the proposed algorithm, the proposed method is applied to some standard functions and some practical problems. The results obtained from the experiments show that the proposed algorithm has provided appropriate and acceptable answers in terms of execution time and accuracy compared to some similar algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76(3):501–521

    Article  MathSciNet  MATH  Google Scholar 

  2. Sahai T (2020) Dynamical systems theory and algorithms for NP-hard problems. In: Proceedings of the Workshop on Dynamics, Optimization and Computation held in honor of the 60th birthday of Michael Dellnitz, pp 183–206

    Google Scholar 

  3. Woeginger GJ (2003) Exact algorithms for NP-hard problems: a survey. In: Combinatorial optimization—eureka, you shrink! Springer, pp 185–207

    Chapter  Google Scholar 

  4. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040

    Article  Google Scholar 

  5. Mitchell M, Forrest S (1994) Genetic algorithms and artificial life. Artif Life 1(3):267–289

    Article  Google Scholar 

  6. Chelouah R, Siarry P (2000) A continuous genetic algorithm designed for the global optimization of multimodal functions. J Heuristics 6(2):191–213

    Article  MATH  Google Scholar 

  7. Faradonbeh RS, Monjezi M, Armaghani DJ (2016) Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Eng Comput 32(1):123–133

    Article  Google Scholar 

  8. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  9. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  10. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724

    Article  Google Scholar 

  11. Pappa GL, Ochoa G, Hyde MR, Freitas AA, Woodward J, Swan J (2014) Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet Program Evolvable Mach 15(1):3–35

    Article  Google Scholar 

  12. Xavier-Júnior JC, Freitas AA, Ludermir TB, Feitosa-Neto A, Barreto CA (2020) An evolutionary algorithm for automated machine learning focusing on classifier ensembles: an improved algorithm and extended results. Theor Comput Sci 805:1–18

    Article  MathSciNet  MATH  Google Scholar 

  13. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  14. Hemasian-Etefagh F, Safi-Esfahani F (2019) Dynamic scheduling applying new population grouping of whales meta-heuristic in cloud computing. J Supercomput 75(10):6386–6450

    Article  Google Scholar 

  15. Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):269–308

    Article  Google Scholar 

  16. Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51(3):1531–1551

    Article  MATH  Google Scholar 

  17. Rajakumar R, Dhavachelvan P, Vengattaraman T (2016) A survey on nature inspired meta-heuristic algorithms with its domain specifications. In: 2016 international conference on communication and electronics systems (ICCES), pp 1–6

    Google Scholar 

  18. Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelligence: a survey. Int J Bio-Inspired Comput 3(1):1–16

    Article  Google Scholar 

  19. Dhiman G (2019) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput 37:1–31

    Google Scholar 

  20. Qin AK, Huang VL, Suganthan PN (2008) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  21. Trivedi A, Sanyal K, Verma P, Srinivasan D (2017) A unified differential evolution algorithm for constrained optimization problems. In: 2017 IEEE congress on evolutionary computation (CEC), pp 1231–1238

    Chapter  Google Scholar 

  22. Pereira-Neto A, Unsihuay C, Saavedra OR (2005) Efficient evolutionary strategy optimisation procedure to solve the nonconvex economic dispatch problem with generator constraints. IEE Proc-Gener Transm Distrib 152(5):653–660

    Article  Google Scholar 

  23. Zhang J-H, Xu X-H (1999) An efficient evolutionary programming algorithm. Comput Oper Res 26(7):645–663

    Article  MathSciNet  MATH  Google Scholar 

  24. Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Simulated annealing: theory and applications. Springer, pp 7–15

    Chapter  MATH  Google Scholar 

  25. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  26. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  27. Qais MH, Hasanien HM, Alghuwainem S (2020) Transient search optimization: a new meta-heuristic optimization algorithm. Appl Intell 50(11):3926–3941

    Article  Google Scholar 

  28. Kumar A, Das S, Zelinka I (2020) A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp 11–12

    Chapter  Google Scholar 

  29. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  30. Knowles JD, Corne DW (2000) M-PAES: A memetic algorithm for multiobjective optimization. In: Proceedings of the 2000 Congress on evolutionary computation. CEC00 (Cat No 00TH8512), vol 1, pp 325–332

    Chapter  Google Scholar 

  31. Birbil Şİ, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282

    Article  MathSciNet  MATH  Google Scholar 

  32. Kora P, Krishna KSR (2016) Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block. Int J Cardiovasc Acad 2(1):44–48

    Article  Google Scholar 

  33. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  34. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Article  Google Scholar 

  35. Alimoradi M, Azgomi H, Asghari A (2021) Trees social relations optimization algorithm: a new swarm-based metaheuristic technique to solve continuous and discrete optimization problems. Math Comput Simul 194:629–664

    Article  MathSciNet  MATH  Google Scholar 

  36. Rahmati SHA, Zandieh M (2012) A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem. Int J Adv Manuf Technol 58(9):1115–1129

    Article  Google Scholar 

  37. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  38. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  39. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  40. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Article  Google Scholar 

  41. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

    Chapter  Google Scholar 

  42. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4):1269–1278

    Article  Google Scholar 

  43. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  44. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp 1942–1948

    Chapter  Google Scholar 

  45. Saha S, Mukherjee V (2018) A novel quasi-oppositional chaotic antlion optimizer for global optimization. Appl Intell 48(9):2628–2660

    Article  Google Scholar 

  46. Wang H, Fan C-C, Tu X (2016) AFSAOCP: a novel artificial fish swarm optimization algorithm aided by ocean current power. Appl Intell 45(4):992–1007

    Article  Google Scholar 

  47. Mousavirad SJ, Ebrahimpour-Komleh H (2017) Human mental search: a new population-based metaheuristic optimization algorithm. Appl Intell 47(3):850–887

    Article  Google Scholar 

  48. Gurrola-Ramos J, Hernàndez-Aguirre A, Dalmau-Cedeño O (2020) COLSHADE for real-world single-objective constrained optimization problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp 1–8

    Google Scholar 

  49. Kumar A, Das S, Zelinka I (2020) A self-adaptive spherical search algorithm for real-world constrained optimization problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp 13–14

    Chapter  Google Scholar 

  50. Karaboga D (2010) Artificial bee colony algorithm. scholarpedia 5(3):6915

    Article  Google Scholar 

  51. Liu B, Zhou Y (2008) Artificial fish swarm optimization algorithm based on genetic algorithm. Comput Eng Des 22

  52. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput 1(1–2):71–79

    Article  Google Scholar 

  53. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  54. Timmis J, Hone A, Stibor T, Clark E (2008) Theoretical advances in artificial immune systems. Theor Comput Sci 403(1):11–32

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  56. Kim JY, Kim Y, Kim YK (2001) An endosymbiotic evolutionary algorithm for optimization. Appl Intell 15(2):117–130

    Article  MATH  Google Scholar 

  57. Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res IJSIR 1(1):1–16

    Article  MathSciNet  Google Scholar 

  58. Greensmith J (2007) The dendritic cell algorithm. PhD Thesis, Citeseer

  59. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  60. Chen B, Ivanov I, Klein ML, Parrinello M (2003) Hydrogen bonding in water. Phys Rev Lett 91(21):215503

    Article  Google Scholar 

  61. Ball P (2015) H2O: a biography of water. Hachette UK

    Google Scholar 

  62. Rohr K, Linder F (1976) Vibrational excitation of polar molecules by electron impact. I. Threshold resonance in HF and HCl. J Phys B At Mol Phys 9(14):2521

    Article  Google Scholar 

  63. Aveyard R, Binks BP, Fletcher PDI, Lu JR (1990) The resolution of water-in-crude oil emulsions by the addition of low molar mass demulsifiers. J Colloid Interface Sci 139(1):128–138

    Article  Google Scholar 

  64. Ladenstein R, Antranikian G (1998) Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Biotechnol Extrem:37–85

  65. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693

    Article  Google Scholar 

  66. Digalakis JG, Margaritis KG (2002) An experimental study of benchmarking functions for genetic algorithms. Int J Comput Math 79(4):403–416

    Article  MathSciNet  MATH  Google Scholar 

  67. Lin M-H, Tsai J-F, Hu N-Z, Chang S-C (2013) Design optimization of a speed reducer using deterministic techniques. Math Probl Eng 2013

  68. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  69. Masehian E, Sedighizadeh D (2010) A multi-objective PSO-based algorithm for robot path planning. In: 2010 IEEE International Conference on Industrial Technology, pp 465–470

    Chapter  Google Scholar 

  70. You S, Diao M, Gao L (2019) Implementation of a combinatorial-optimisation-based threat evaluation and jamming allocation system. IET Radar Sonar Navig 13(10):1636–1645

    Article  Google Scholar 

  71. Sallam KM, Elsayed SM, Chakrabortty RK, Ryan MJ (2020) Improved multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp 1–8

    Google Scholar 

  72. Kumar A, Misra RK, Singh D (2017) Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: 2017 IEEE congress on evolutionary computation (CEC), pp 1835–1842

    Chapter  Google Scholar 

  73. Ghani JA, Choudhury IA, Hassan HH (2004) Application of Taguchi method in the optimization of end milling parameters. J Mater Process Technol 145(1):84–92

    Article  Google Scholar 

  74. Huang H-C (2015) A Taguchi-based heterogeneous parallel metaheuristic ACO-PSO and its FPGA realization to optimal polar-space locomotion control of four-wheeled redundant mobile robots. IEEE Trans Ind Inform 11(4):915–922

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Validation tests

Appendix: Validation tests

Table 27 Results of industrial chemical processes problems (RC01 -RC07)
Table 28 Results of process synthesis and design problems (RC08 -RC14)
Table 29 Results of Mechanical Engineering Problems (RC15 -RC33)
Table 30 Results of Power System Problems (RC34 -RC44)
Table 31 Results of Power Electronic Problems (RC45 -RC50)
Table 32 Results of Livestock Feed Ration Optimization Problems (RC51 -RC57)
Table 33 10D evaluation results
Table 34 15D evaluation results
Table 35 20D evaluation results
Table 36 50D evaluation results
Table 37 Adjustment of Taguchi control parameters in five types, for 10 algorithms compared with WAO

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daliri, A., Asghari, A., Azgomi, H. et al. The water optimization algorithm: a novel metaheuristic for solving optimization problems. Appl Intell 52, 17990–18029 (2022). https://doi.org/10.1007/s10489-022-03397-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03397-4

Keywords

Navigation