Skip to main content
Log in

Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties. The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller (MFISMC). A position controller is designed based on adaptive sliding mode control (SMC) to safely drive the aerial robot and ensure fast state convergence under external disturbances. Additionally, the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots. Then, the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state. Finally, to demonstrate the performance and robustness of the proposed control strategy, numerical simulations are carried out, which are also compared with other conventional strategies, such as proportional-integralderivative (PID), backstepping (BS), and SMC. The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LYU, J. B., ZENG, Y., ZHANG, R., and LIM, T. J. Placement optimization of UAV-mounted mobile base stations. IEEE Communications Letters, 21(3), 604–607 (2016)

    Article  Google Scholar 

  2. STAMPA, M., SUTORMA, A., JAHN, U., THIEM, J., WOLFF, C., and ROEHRIG, C. Maturity levels of public safety applications using unmanned aerial systems: a review. Journal of Intelligent & Robotic Systems, 103(1), 1–13 (2021)

    Article  Google Scholar 

  3. HERISSE, B., HAMEL, T., MAHONY, R., and RUSSOTTO, F. Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Transactions on Robotics, 28(1), 77–89 (2012)

    Article  Google Scholar 

  4. SUNG, I. and NIELSEN, P. Zoning a service area of unmanned aerial vehicles for package delivery services. Journal of Intelligent & Robotic Systems, 97(3), 719–731 (2020)

    Article  Google Scholar 

  5. UMEMOTO, K., ENDO, T., and MATSUNO, F. Dynamic cooperative transportation control using friction forces of n multi-rotor unmanned aerial vehicles. Journal of Intelligent & Robotic Systems, 100(3), 1085–1095 (2020)

    Article  Google Scholar 

  6. AN, N. B., WANG, Q. S., ZHAO, X. C., and WANG, Q. Y. Differential flatness-based distributed control of underactuated robot swarms. Applied Mathematics and Mechanics (English Edition), 44(10), 1777–1790 (2023) https://doi.org/10.1007/s10483-023-3040-8

    Article  MathSciNet  Google Scholar 

  7. LIU, S. K., MICHAEL, W., KARTIK, M., SUN, K., SUBHRAJIT, B., CAMILLO, J. T., and VIJAY, K. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments. IEEE Robotics and Automation Letters, 2(3), 1688–1695 (2017)

    Article  Google Scholar 

  8. ZHOU, B. Y., PAN, J., GAO, F., and SHEN, S. J. RAPTOR: robust and perception-aware trajectory replanning for quadrotor fast flight. IEEE Transactions on Robotics, 37(6), 1992–2009 (2021)

    Article  Google Scholar 

  9. SUN, G. J., ZHOU, M. Q., and JIANG, X. Q. Non-cooperative spacecraft proximity control considering target behavior uncertainty. Astrodynamics, 6, 399–411 (2022)

    Article  Google Scholar 

  10. CHEN, T., SHAN, J. J., WEN, H., and XU, S. D. Review of attitude consensus of multiple spacecraft. Astrodynamics, 6, 329–356 (2022)

    Article  Google Scholar 

  11. MARSHALL, J. A., SUN, W., and ANDREA, L. A. A survey of guidance, navigation, and control systems for autonomous multi-rotor small unmanned aerial systems. Annual Reviews in Control, 52(1), 390–427 (2021)

    Article  MathSciNet  Google Scholar 

  12. GUERRERO-SANCHEZ, M. E., LOZANO, R., CASTILLO, P., HERNANDEZ-GONZALE, Z. O., GARCIA-BELTRAN, C. D., and VALENCIA-PALOMO, G. Nonlinear control strategies for a UAV carrying a load with swing attenuation. Applied Mathematical Modelling, 91(1), 709–722 (2021)

    Article  MathSciNet  Google Scholar 

  13. WANG, B. F., WANG, Q., ZHOU, Q., and LIU, Y. L. Active control of flow past an elliptic cylinder using an artificial neural network trained by deep reinforcement learning. Applied Mathematics and Mechanics (English Edition), 43(12), 1921–1934 (2022) https://doi.org/10.1007/s10483-022-2940-9

    Article  Google Scholar 

  14. LIU, S., ZHANG, R., WANG, Q. Y., and HE, X. Y. Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks. Applied Mathematics and Mechanics (English Edition), 41(12), 1833–1846 (2020) https://doi.org/10.1007/s10483-020-2686-6

    Article  MathSciNet  Google Scholar 

  15. GE, X. S., YAO, Q. J., and CHEN, L. Q. Control strategy of optimal deployment for spacecraft solar array system with initial state uncertainty. Applied Mathematics and Mechanics (English Edition), 39(10), 1437–1452 (2018) https://doi.org/10.1007/s10483-018-2378-8

    Article  MathSciNet  Google Scholar 

  16. NOORMOHAMMADI, A. A., ESRAFILIAN, O., AHANGAR, M., and HAMID, T. System identification and based control of quadrotor attitude. Mechanical Systems and Signal Processing, 135, 171–183 (2020)

    Google Scholar 

  17. MIRANDA, C. R. and AGUILAR, L. T. Robust PID control of quadrotors with power reduction analysis. ISA Transactions, 98, 47–62 (2020)

    Article  Google Scholar 

  18. SUN, J. T., WANG, Q. G., and GAO, H. Q. Delay-dependent robust stability and H∞ analysis of stochastic systems with time-varying delay. Applied Mathematics and Mechanics (English Edition), 31(2), 255–262 (2010) https://doi.org/10.1007/s10483-010-0213-6

    Article  MathSciNet  Google Scholar 

  19. REKABI, F., SHIRAZI, F. A., SADIGH, M. J., and SAADAT, M. Nonlinear H∞ measurement feedback control algorithm for quadrotor position tracking. Journal of the Franklin Institute, 357(11), 6777–6804 (2020)

    Article  MathSciNet  Google Scholar 

  20. BOUABDALLAH, S., MURRIERI, P., and SIEGWART, R. Towards autonomous indoor micro VTOL. Autonomous Robots, 18(2), 171–183 (2005)

    Article  Google Scholar 

  21. ELKHATEM, A. and ENGIN, S. N. Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control. Alexandria Engineering Journal, 61(8), 6275–6292 (2022)

    Article  Google Scholar 

  22. VAZQUEZ-NICOLAS, J. M., ZAMORA, E., GONZALEZ-HERNANDEZ, I., LOZANO, R., and SOSSA, H. PD+SMC quadrotor control for altitude and crack recognition using deep learning. International Journal of Control, Automation and Systems, 18(4), 834–844 (2020)

    Article  Google Scholar 

  23. MARTINS, L., CARDEIRA, C., and OLIVEIRA, P. Feedback linearization with zero dynamics stabilization for quadrotor control. Journal of Intelligent & Robotic Systems, 101, 1–17 (2021)

    Article  Google Scholar 

  24. BENALLEGUE, A., MOKHTARI, A., and FRIFMAN, L. M. High-order sliding-mode observer for a quadrotor UAV. International Journal of Robust and Nonlinear Control, 18(4), 312–322 (2008)

    MathSciNet  Google Scholar 

  25. WANG, H. P., YE, X. F., TIAN, Y., ZHENG, G., and CHRISTOV, N. Model-free based terminal SMC of quadrotor attitude and position. IEEE Transactions on Aerospace and Electronic Systems, 52(5), 2519–2528 (2012)

    Article  Google Scholar 

  26. AMINURRASHID, N., BASRI, M. A. M., and MOHAMED, Z. Position and attitude tracking of MAV quadrotor using SMC-based adaptive PID controller. Drones, 6(9), 1–18 (2022)

    Google Scholar 

  27. LABBADI, M. and MOUSSAOUI, H. E. An improved adaptive fractional-order fast integral terminal sliding mode control for distributed quadrotor. Mathematics and Computers in Simulation, 188, 120–134 (2021)

    Article  MathSciNet  Google Scholar 

  28. HUA, C. C., CHEN, J. N., and GUAN, X. P. Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance. Journal of the Franklin Institute, 355(14), 6323–6338 (2018)

    Article  MathSciNet  Google Scholar 

  29. LOPEZ, S. I., ROSSOMANDO, F., PEREZ, A. R., SORIA, C., and MORENO, J. Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks. Neurocomputing, 460, 243–255 (2021)

    Article  Google Scholar 

  30. DIERKS, T. and JAGANNATHAN, S. Output feedback control of a quadrotor UAV using neural networks. IEEE Transactions on Neural Networks, 21(1), 50–66 (2010)

    Article  Google Scholar 

  31. RANDAL, W. B. Small Unmanned Aircraft: Theory and Practice, Princeton University Press, New Jersey, 30–38 (2012)

    Google Scholar 

  32. ISLAM, S., LIU, P. X., and EI-SADDIK, A. Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Transactions on Industrial Electronics, 62(3), 1563–1571 (2015)

    Article  Google Scholar 

  33. MAHOOTCHI, M., TIZHOOSH, H., and PONNAMBALAM, R. K. Oppositional extension of reinforcement learning techniques. Information Sciences, 275, 101–114 (2014)

    Article  MathSciNet  Google Scholar 

  34. DAVIDE, Z., PIETER, R. R., and SANDER, B. Learning continuous-time working memory tasks with on-policy neural reinforcement learning. Neurocomputing, 461, 635–656 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen An.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Zhou, J. & Wang, K. Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking. Appl. Math. Mech.-Engl. Ed. 45, 603–618 (2024). https://doi.org/10.1007/s10483-024-3103-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3103-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation