Skip to main content
Log in

Nonlinear semi-analytical modeling of liquid sloshing in rectangular container with horizontal baffles

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A nonlinear semi-analytical scheme is proposed for investigating the finite-amplitude nonlinear sloshing in a horizontally baffled rectangular liquid container under the seismic excitation. The sub-domain method is developed to analytically derive the modal behaviors of the baffled linear sloshing. The viscosity dissipation effects from the interior liquid and boundary layers are considered. With the introduction of the generalized time-dependent coordinates, the surface wave elevation and velocity potential are represented by a series of linear modal eigenfunctions. The infinite-dimensional modal system of the nonlinear sloshing is formulated based on the Bateman-Luke variational principle, which is further reduced to the finite-dimensional modal system by using the Narimanov-Moiseev asymptotic ordering. The base force and overturning moment induced by the nonlinear sloshing are derived as the functions of the generalized time-dependent coordinates. The present results match well with the available analytical, numerical, and experimental results. The paper examines the surface wave elevation, base force, and overturning moment versus the baffle parameters and excitation amplitude in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SEZEN, H. and WHITTAKER, A. S. Seismic performance of industrial facilities affected by the 1999 Turkey earthquake. Journal of Performance of Constructed Facilities, 20(1), 28–36 (2006)

    Article  Google Scholar 

  2. AKYILDIZ, H. Liquid sloshing in a baffled rectangular tank under irregular excitations. Ocean Engineering, 278, 114472 (2023)

    Article  Google Scholar 

  3. YING, L., MENG, X., ZHOU, D., XU, X. L., ZHANG, J. D., and LI, X. H. Sloshing of liquid in a baffled rectangular aqueduct considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 122, 132–147 (2019)

    Article  Google Scholar 

  4. BELLEZI, C. A., CHENG, L. Y., OKADA, T., and ARAI, M. Optimized perforated bulkhead for sloshing mitigation and control. Ocean Engineering, 187, 106171 (2019)

    Article  Google Scholar 

  5. NIMISHA, P., JAYALEKSHMI, R., and VENKATARAMANA, K. Slosh damping in rectangular liquid tank with additional blockage effects under pitch excitation. Journal of Fluids Engineering, 144(12), 121403 (2022)

    Article  Google Scholar 

  6. CHO, I. H. and KIM, M. H. Effect of a bottom-hinged, top-tensioned porous baffle on sloshing reduction in a rectangular tank. Applied Ocean Research, 104, 102345 (2020)

    Article  Google Scholar 

  7. NAYAK, S. K. and BISWAL, K. C. Nonlinear seismic response of a partially-filled rectangular liquid tank with a submerged block. Journal of Sound and Vibration, 368, 148–173 (2016)

    Article  Google Scholar 

  8. MITRA, S. and SINHAMAHAPATRA, K. P. Slosh dynamics of liquid-filled containers with sub-merged components using pressure-based finite element method. Journal of Sound and Vibration, 304(1–2), 361–381 (2007)

    Article  Google Scholar 

  9. ISAACSON, M. and PREMASIRI, S. Hydrodynamic damping due to baffles in a rectangular tank. Canadian Journal of Civil Engineering, 28, 608–616 (2001)

    Article  Google Scholar 

  10. MENG, X., ZHOU, D., LIM, Y. M., WANG, J. D., and HUO, R. L. Seismic response of rectangular liquid container with dual horizontal baffles on deformable soil foundation. Journal of Earthquake Engineering, 27(7), 1943–1972 (2023)

    Article  Google Scholar 

  11. CHO, I. H. Liquid sloshing in a swaying/rolling rectangular tank with a flexible porous elastic baffle. Marine Structures, 75, 102865 (2021)

    Article  Google Scholar 

  12. MENG, X., ZHOU, D., KIM, M. K., and LIM, Y. M. Free vibration and dynamic response analysis of liquid in a rectangular rigid container with an elastic baffle. Ocean Engineering, 216, 108119 (2020)

    Article  Google Scholar 

  13. MENG, X., ZHOU, D., and WANG, J. D. Effect of vertical elastic baffle on liquid sloshing in rectangular rigid container. International Journal of Structural Stability and Dynamics, 21(12), 2150167 (2021)

    Article  MathSciNet  Google Scholar 

  14. KOLAEI, A. and RAKHEJA, S. Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container. Journal of Vibration and Control, 25(1), 84–97 (2019)

    Article  MathSciNet  Google Scholar 

  15. SYGULSKI, R. Boundary element analysis of liquid sloshing in baffled tanks. Engineering Analysis with Boundary Elements, 35(8), 978–983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. HU, Z., ZHANG, X. Y., LI, X. W., and LI, Y. On natural frequencies of liquid sloshing in 2-D tanks using boundary element method. Ocean Engineering, 153, 88–103 (2018)

    Article  Google Scholar 

  17. GAO, H. S., YIN, Z., LIU, J., ZANG, Q., and LIN, G. Finite element method for analyzing effects of porous baffle on liquid sloshing in the two-dimensional tanks. Engineering Computations, 38, 2105–2136 (2021)

    Article  Google Scholar 

  18. LIU, D. G. and LIN, P. Z. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 227(8), 3921–3939 (2008)

    Article  MATH  Google Scholar 

  19. AMANO, Y., ISHIKAWA, S., YOSHITAKE, T., and KONDOU, T. Modeling and design of a tuned liquid damper using triangular-bottom tank by a concentrated mass model. Nonlinear Dynamics, 104(3), 1917–1935 (2021)

    Article  Google Scholar 

  20. BARABADI, S., IRANMANESH, A., PASSANDIDEH-FARD, M., and BARABADI, A. A numerical study on mitigation of sloshing in a rectangular tank using floating foams. Ocean Engineering, 277, 114267 (2023)

    Article  Google Scholar 

  21. XUE, M. A., CHEN, Y. C., ZHENG, J. H., QIAN, L., and YUAN, X. L. Liquid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes. Ocean Engineering, 192, 106582 (2019)

    Article  Google Scholar 

  22. LUO, Z. Q. and CHEN, Z. M. Sloshing simulation of standing wave with time-independent finite difference method for Euler equations. Applied Mathematics and Mechanics (English Edition), 32(11), 1475–1488 (2011) https://doi.org/10.1007/s10483-011-1516-6

    Article  MathSciNet  MATH  Google Scholar 

  23. BELLEZI, C. A., CHENG, L. Y., and NISHIMOTO, K. A numerical study on sloshing mitigation by vertical floating rigid baffle. Journal of Fluids and Structures, 109, 103456 (2022)

    Article  Google Scholar 

  24. PIZZOLI, M., SALTARI, F., MASTRODDI, F., MARTINEZ-CARRASCAL, J., and GONZÁLEZ-GUTIÉRREZ, L. M. Nonlinear reduced-order model for vertical sloshing by employing neural networks. Nonlinear Dynamics, 107, 1469–1478 (2022)

    Article  Google Scholar 

  25. AKYILDIZ, H., ÜNAl, N. E., and AKSOY, H. An experimental investigation of the effects of the ring baffles on liquid sloshing in a rigid cylindrical tank. Ocean Engineering, 59, 190–197 (2013)

    Article  Google Scholar 

  26. SANAPALA, V. S., RAJKUMAR, M., VELUSAMY, K., and PATNAIK, B. S. V. Numerical simulations of parametric liquid sloshing in a horizontally baffled rectangular container. Journal of Fluids and Structures, 76, 229–250 (2018)

    Article  Google Scholar 

  27. NAYAK, S. K. and BISWAL, K. C. Liquid damping in rectangular tank fitted with various internal objects — an experimental investigation. Ocean Engineering, 108, 552–562 (2015)

    Article  Google Scholar 

  28. WU, C. H., FALTINSEN, O. M., and CHEN, B. F. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Computer & Fluids, 63, 9–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. LU, L., JIANG, S. C., ZHAO, M., and TANG, G. Q. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Engineering, 108, 662–677 (2015)

    Article  Google Scholar 

  30. HWANG, S. C., PARK, J. C., GOTOH, H., KHAYYER, A., and KANG, K. J. Numerical simulations of sloshing flows with elastic baffles by using a particle-based liquid-structure interaction analysis method. Ocean Engineering, 118, 227–241 (2016)

    Article  Google Scholar 

  31. HERMANGE, C., OGER, G., CHENADEC, Y. L., and TOUZÉ, D. L. A 3D SPH-FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground. Computer Methods in Applied Mechanics and Engineering, 355, 558–590 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. YANG, Q., JONES, V., and MCCUE, L. Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Engineering, 55, 136–147 (2012)

    Article  Google Scholar 

  33. BELAKROUM, R., KADJA, M., MAI, T. H., and MAALOUF, C. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid. Mechanics Research Communications, 37(3), 341–346 (2010)

    Article  MATH  Google Scholar 

  34. NAKAYAMA, T. and WASHIZU, K. The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. International Journal for Numerical Methods in Engineering, 17(11), 1631–1646 (1981)

    Article  MATH  Google Scholar 

  35. ZHANG, C. W. Nonlinear simulation of resonant sloshing in wedged tanks using boundary element method. Engineering Analysis with Boundary Elements, 69, 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. ZHANG, Z. L., KHALID, M. S. U., LONG, T., CHANG, J. Z., and LIU, M. B. Investigation on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method. Journal of Fluids and Structures, 94, 102942 (2020)

    Article  Google Scholar 

  37. JIN, X., ZHENG, H. Y., LIU, M. M., ZHANG, F. G., YANG, Y. Z., and REN, L. Damping effects of dual vertical baffles on coupled surge-pitch sloshing in three-dimensional tanks: a numerical investigation. Ocean Engineering, 261, 112130 (2022)

    Article  Google Scholar 

  38. FALTINSEN, O. M. A numerical nonlinear method of sloshing in tanks with two-dimensional flow. Journal of Ship Research, 22(3), 193–202 (1978)

    Article  Google Scholar 

  39. SAGHI, R., HIRDARIS, S., and SAGHI, H. The influence of flexible liquid structure interaction on sway induced tank sloshing dynamics. Engineering Analysis with Boundary Elements, 131, 206–217 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. BISWAL, K. C., BHATTACHARYYA, S. K., and SINHA, P. K. Non-linear sloshing in partially liquid filled containers with baffles. International Journal for Numerical Methods in Engineering, 68(3), 317–337 (2006)

    Article  MATH  Google Scholar 

  41. ESWARAN, M. and REDDY, G. R. Numerical simulation of tuned liquid tank-structure systems through σ-transformation based liquid-structure coupled solver. Wind and Structures, 23(5), 421–447 (2016)

    Article  Google Scholar 

  42. GOUDARZI, M. A. and DANESH, P. N. Numerical investigation of a vertically baffled rectangular tank under seismic excitation. Journal of Fluid Mechanics, 61, 450–460 (2016)

    Google Scholar 

  43. FALTINSEN, O. M., ROGNEBAKKE, O. F., LUKOVSKY, I. A., and TIMOKHA, A. N. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of Fluid Mechanics, 407, 201–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. FALTINSEN, O. M. and TIMOKHA, A. N. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. Journal of Fluid Mechanics, 432, 167–200 (2001)

    Article  MATH  Google Scholar 

  45. FALTINSEN, O. M. and TIMOKHA, A. N. A multimodal method for liquid sloshing in a two-dimensional circular tank. Journal of Fluid Mechanics, 665, 457–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. FALTINSEN, O. M. and TIMOKHA, A. N. Resonant three-dimensional nonlinear sloshing in a square-base basin, part 4: oblique forcing and linear viscous damping. Journal of Fluid Mechanics, 822, 139–169 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. FALTINSEN, O. M., ROGNEBAKKE, O. F., and TIMOKHA, A. N. Resonant three-dimensional nonlinear sloshing in a square-base, part 2: effect of higher modes. Journal of Fluid Mechanics, 523, 199–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. FALTINSEN, O. M., LAGODZINSKYI, O. E., and TIMOKHA, A. N. Resonant three-dimensional nonlinear sloshing in a square base basin, part 5: three-dimensional non-parametric tank forcing. Journal of Fluid Mechanics, 894, A10 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. FALTINSEN, O. M. and TIMOKHA, A. N. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470, 319–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. GAVRILYUK, I., LUKOVSKY, I., and TIMOKHA, A. N. Linear and nonlinear sloshing in a circular conical tank. Fluid Dynamics Research, 37(6), 399–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. GAVRILYUK, I., HERMANN, M., LUKOVSKY, I. A., SOLODUM, O. V., and TIMOKHA, A. N. Weakly nonlinear sloshing in a truncated circular conical tank. Fluid Dynamics Research, 45(5), 055512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. YU, Y. S., MA, X. R., and WANG, B. L. Multidimensional modal analysis of liquid nonlinear sloshing in right circular cylindrical tank. Applied Mathematics and Mechanics (English Edition), 28(8), 1007–1018 (2007) https://doi.org/10.1007/s10483-007-0803-y

    Article  MATH  Google Scholar 

  53. FALTINSEN, O. M. and TIMOKHA, A. N. Multimodal analysis of weakly nonlinear sloshing in a spherical tank. Journal of Fluid Mechanics, 719, 129–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. FALTINSEN, O. M., FIROOZKOOTHI, R., and TIMOKHA, A. N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen. Journal of Engineering Mathematics, 70(1), 93–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. FALTINSEN, O. M., FIROOZKOOTHI, R., and TIMOKHA, A. N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank. Physics of Fluids, 23(6), 062106 (2011)

    Article  Google Scholar 

  56. LOVE, J. S. and TAIL, M. J. Nonlinear simulation of a tuned liquid damper with damping screens using a modal expansion technique. Journal of Fluids and Structures, 26(7–8), 1058–1077 (2010)

    Article  Google Scholar 

  57. LOVE, J. S. and TAIL, M. J. Non-linear multimodal model for tuned liquid dampers of arbitrary tank geometry. International Journal of Non-Linear Mechanics, 46(8), 1065–1075 (2011)

    Article  Google Scholar 

  58. LOVE, J. S. and TAIL, M. J. Nonlinear multimodal model for TLD of irregular tank geometry and small liquid depth. Journal of Fluids and Structures, 43, 83–99 (2013)

    Article  Google Scholar 

  59. LOVE, J. S. and HASKETT, T. C. Nonlinear modelling of tuned sloshing dampers with large internal obstructions: damping and frequency effects. Journal of Fluids and Structures, 79, 1–13 (2018)

    Article  Google Scholar 

  60. GAVRILYUK, I., LUKOVSKY, I., TROTSENKO, Y., and TIMOKHA, A. N. Sloshing in a vertical circular cylindrical tank with an annular baffle, part 2: nonlinear resonant waves. Journal of Engineering Mathematics, 57(1), 57–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. ZHOU, D., WANG, J. D., and LIU, W. Q. Nonlinear sloshing of liquid in rigid cylindrical container with a rigid annular baffle: free vibration. Nonlinear Dynamics, 78(4), 2557–2576 (2014)

    Article  MATH  Google Scholar 

  62. WANG, J. D., LO, S. H., ZHOU, D., and DONG, Y. Nonlinear sloshing of liquid in a rigid cylindrical container with a rigid annular baffle under lateral excitation. Shock and Vibration, 2019, 5398038 (2019)

    Google Scholar 

  63. LAMB, H. Hydrodynamics, Cambridge University Press, Cambridge (1945)

    MATH  Google Scholar 

  64. HENDERSON, D. M. and MILES, J. W. Surface-wave damping in a circular cylinder with a fixed contact line. Journal of Fluid Mechanics, 275, 285–299 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  65. FALTINSEN, O. M. and TIMOKHA, A. Sloshing, Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  66. BATEMAN, H. Partial Differential Equations of Mathematical Physics, Dover Publications, New York (1944)

    MATH  Google Scholar 

  67. LUKE, J. C. A variational principle for a liquid with a free surface. Journal of Fluid Mechanics, 27, 395–397 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  68. NARIMANOV, G. S. Movement of a tank partly filled by a liquid: the taking into account of non-smallness of amplitude. Journal of Applied Mathematics and Mechanics, 21, 513–524 (1957)

    MathSciNet  Google Scholar 

  69. MOISEEV, N. N. To the theory of nonlinear oscillations of a limited liquid volume of a liquid. Journal of Applied Mathematics and Mechanics, 22, 612–621 (1958)

    Article  Google Scholar 

  70. LUKOVSKY, I. A. Nonlinear Dynamics: Mathematical Models for Rigid Bodies with a Liquid, De Gruyter, Berlin (2015)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Zhou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51978336 and 11702117)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Sun, Y., Wang, J. et al. Nonlinear semi-analytical modeling of liquid sloshing in rectangular container with horizontal baffles. Appl. Math. Mech.-Engl. Ed. 44, 1973–2004 (2023). https://doi.org/10.1007/s10483-023-3054-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3054-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation