Skip to main content
Log in

Effects of the Reynolds number on a scale-similarity model of Lagrangian velocity correlations in isotropic turbulent flows

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A scale-similarity model of a two-point two-time Lagrangian velocity correlation (LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows (HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313 (2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values (Rλ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity. Moreover, the dispersion velocity V normalized by the Kolmogorov velocity Vηηη in which η and τη are the Kolmogorov space and time scales, respectively, scales with the Reynolds number Rλ as \(V/V_\eta\propto{R_\lambda^{1.39}}\) obtained from the numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DIMOTAKIS, P. E. Turbulent mixing. Annual Review of Fluid Mechanics, 37, 329–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. BOURGOIN, M., OUELLETTE, N. T., XU, H. T., BERG, J., and BODENSCHATZ, E. The role of pair dispersion in turbulent flow. Science, 311, 835–838 (2005)

    Article  Google Scholar 

  3. SAWFORD, B. Turbulent relative dispersion. Annual Review of Fluid Mechanics, 33, 289–317 (2001)

    Article  MATH  Google Scholar 

  4. SALAZAR, J. P. L. C. and COLLINS, L. R. Two-particle dispersion in isotropic turbulent flows. Annual Review of Fluid Mechanics, 41, 405–432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. TOSCHI, F. and BODENSCHATZ, E. Lagrangian properties of particles in turbulence. Annual Review of Fluid Mechanics, 41, 375–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. TAYLOR, G. Diffusion by continuous movements. Proceedings of the London Mathematical Society, 20, 196–212 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  7. BATCHELOR, G. K. The application of the similarity theory of turbulence to atmospheric diffusion. Quarterly Journal of the Royal Meteorological Society, 76, 133–146 (1950)

    Article  Google Scholar 

  8. BATCHELOR, G. K. Diffusion in a field of homogeneous turbulence: II. The relative motion of particles. Mathematical Proceedings of the Cambridge Philosophical Society, 48, 345–362 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  9. RICHARDSON, L. F. Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society A, 110, 709–737 (1926)

    Article  Google Scholar 

  10. DHARIWAL, R. and BRAGG, A. Tracer particles only separate exponentially in the dissipation range of turbulence after extremely long times. Physical Review Fluids, 3, 034604 (2018)

    Article  Google Scholar 

  11. SMITH, F. and HAY, J. The expansion of clusters of particles in the atmosphere. Quarterly Journal of the Royal Meteorological Society, 87, 82–101 (1961)

    Article  Google Scholar 

  12. HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313 (2009)

    Article  Google Scholar 

  13. JIN, G. D., HE, G. W., and WANG, L. P. Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence. Physics of Fluids, 22, 055106 (2010)

    Article  MATH  Google Scholar 

  14. JIN, G. D. and HE, G. W. A nonlinear model for the subgrid timescale experienced by heavy particles in large eddy simulation of isotropic turbulence with a stochastic differential equation. New Journal of Physics, 15, 035011 (2013)

    Article  Google Scholar 

  15. HE, G. W., WANG, M., and LELE, S. K. On the computation of space-time correlations by large-eddy simulation. Physics of Fluids, 16, 3859–3867 (2004)

    Article  MATH  Google Scholar 

  16. HE, G. W., RUBINSTEIN, R., and WANG, L. P. Effects of subgrid-scale modeling on time correlations in large eddy simulation. Physics of Fluids, 14, 2186–2193 (2002)

    Article  MATH  Google Scholar 

  17. YANG, Y., HE, G.W., and WANG, L. P. Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. Journal of Turbulence, 9, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. POJE, A. C., OZGÖKMEN, T. M., LIPPHARDT, B. L., JR, HAUS, B. K., RYAN, E. H., HAZA, A. C., JACOBS, G. A., RENIERS, A. J., OLASCOAGA, M. J., NOVELLI, G., GRIFFA, A., BERON-VERA, F. J., CHEN, S. S., COELHO, E., HOGAN, P. J., KIRWAN, A. D., Jr, HUNTLEY, H. S., and MARIANO, A. J. Submesoscale dispersion in the vicinity of the deepwater horizon spill. Proceedings of the National Academy of Sciences of the United States of America, 111, 12693–12698 (2014)

    Article  Google Scholar 

  19. ESWARAN, V. and POPE, S. B. An examination of forcing in direct numerical simulations of turbulence. Computers and Fluidse, 16, 257–278 (1988)

    Article  MATH  Google Scholar 

  20. YEUNG, P. K. and POPE, S. B. Lagrangian statistics from direct numerical simulations of isotropic turbulence. Journal of Fluid Mechanics, 207, 531–586 (1989)

    Article  MathSciNet  Google Scholar 

  21. PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., and FLANNERY, B. Numerical Recipes in Fortran: the Art of Scientific Computing, Cambridge University Press, New York (1993)

    MATH  Google Scholar 

  22. POPE, S. B. Turbulent Flows, Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  23. MONIN, A. S. and YAGLOM, A. M. Statistical Fluid Mechanics: Mechanics of Turbulence, MIT Press, Cambridge (1975)

    Google Scholar 

  24. BIFERALE, L. Lagrangian structure functions in turbulence: experimental and numerical results. Physics of Fluids, 20, 065103 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Jin.

Additional information

Project supported by the Science Challenge Program (No.TZ2016001), the National Natural Science Foundation of China (Nos. 11472277, 11572331, 11232011, and 11772337), the Strategic Priority Research Program, Chinese Academy of Sciences (No.XDB22040104), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No.QYZDJ-SSW-SYS002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Chen, J. & Jin, G. Effects of the Reynolds number on a scale-similarity model of Lagrangian velocity correlations in isotropic turbulent flows. Appl. Math. Mech.-Engl. Ed. 39, 1605–1616 (2018). https://doi.org/10.1007/s10483-018-2387-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2387-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation