Skip to main content
Log in

Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The vibration of a longitudinally moving rectangular plate submersed in an infinite liquid domain is studied analytically with the Rayleigh-Ritz method. The liquid is assumed to be incompressible, inviscid, and irrotational, and the velocity potential is used to describe the fluid velocity in the whole liquid field. The classical thin plate theory is used to derive mechanical energies of the traveling plate. As derivative of transverse displacement with respect to time in the compatibility condition equation exists, an exponential function is introduced to depict the dynamic deformation of the moving plate. It is shown that this exponential function works well with the Rayleigh- Ritz method. A convergence study shows a quick convergence speed for the immersed moving plate. Furthermore, the parametric study is carried out to demonstrate the effect of system parameters including the moving speed, the plate location, the liquid depth, the plate-liquid ratio, and the boundary condition. Results show that the above system parameters have significant influence on the vibration characteristics of the immersed moving plate. To extend the study, the method of added virtual mass incremental (AVMI) factor is used. The results show good agreement with those from the Rayleigh-Ritz method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pellicano, F. and Vestroni, F. Nonlinear dynamics and bifurcations of an axially moving beam. Journal of Vibration and Acoustics, 122, 21–30 (2000)

    Article  Google Scholar 

  2. Marynowski, K. Non-linear dynamic analysis of an axialy moving viscoelastic beam. Journal of Theoretical and Applied Mechanics, 40, 465–482 (2002)

    MATH  Google Scholar 

  3. Chen, L. Q. Analysis and control of transverse vibrations of axially moving strings. Applied Mechanics Reviews, 58, 91–116 (2005)

    Article  Google Scholar 

  4. Yang, X. D. and Chen, L. Q. Dynamic stability of axially moving viscoelastic beams with pulsating speed. Applied Mathematics and Mechanics (English Edition), 26 (8), 989–995 (2005) DOI 10.1007/BF02466411

    Article  MATH  Google Scholar 

  5. An, C. and Su, J. Dynamic response of axially moving Timoshenko beams: integral transform solution. Applied Mathematics and Mechanics (English Edition), 35 (11), 1421–1436 (2014) DOI 10.1007/s10483-014-1879-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Yan, Q. Y., Ding, H., and Chen, L. Q. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 36 (8), 971–984 (2015) DOI 10.1007/s10483-015-1966-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, W. and Song, C. Higher-dimensional periodic and chaotic oscillations for viscoelastic moving belt with multiple internal resonances. International Journal of Bifurcation and Chaos, 17, 1637–1660 (2007)

    Article  MATH  Google Scholar 

  8. Zhang, W., Gao, M., and Yao, M. Global analysis and chaotic dynamics of six-dimensional nonlinear system for an axially moving viscoelastic belt. International Journal of Modern Physics B, 25, 2299–2322 (2011)

    Article  MATH  Google Scholar 

  9. Ghayesh, M. H. Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. International Journal of Non-Linear Mechanics, 45, 382–394 (2010)

    Article  Google Scholar 

  10. Yang, X. D., Yang, S., Qian, Y. J., Zhang, W., and Melnik, R. V. N. Modal analysis of the gyroscopic continua: comparison of continuous and discretized models. Journal of Applied Mechanics, 83, 084502 (2016)

    Article  Google Scholar 

  11. Chen, L. Q. and Ding, H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. ASME Journal of Vibration and Acoustics, 132, 011009 (2010)

    Article  Google Scholar 

  12. Chen, L. Q. and Wang, B. Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation. European Journal of Mechanics-A/Solids, 28, 786–791 (2009)

    Article  MATH  Google Scholar 

  13. Ding, H. and Chen, L. Q. Galerkin methods for natural frequencies of high-speed axially moving beams. Journal of Sound and Vibration, 329, 3484–3494 (2010)

    Article  Google Scholar 

  14. Ding, H., Chen, L. Q., and Yang, S. P. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. Journal of Sound and Vibration, 331, 2426–2442 (2012)

    Article  Google Scholar 

  15. Chang, J. R., Lin, W., Huang, C. J., and Choi, S. T. Vibration and stability of an axially moving Rayleigh beam. Applied Mathematical Modelling, 34, 1482–1497 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghayesh, M. H., Pa¨ ioussis, M. P., and Amabili, M. Subcritical parametric response of an axially accelerating beam. Thin-Walled Structures, 60, 185–193 (2012)

    Article  Google Scholar 

  17. Li, J., Yan, Y. H., Guo, X. H., and Wang, Y. Q. Research on vibration control method of steel strip for a continuous hot-dip galvanizing line. ISIJ International, 52, 1072–1079 (2012)

    Article  Google Scholar 

  18. Zhang, W., Wang, D. M., and Yao, M. H. Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dynamics, 78, 839–856 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, W., Sun, L., Yang, X. D., and Jia, P. Nonlinear dynamic behaviors of a deploying-andretreating wing with varying velocity. Journal of Sound and Vibration, 332, 6785–6797 (2013)

    Article  Google Scholar 

  20. Ding, H. and Zu, J. W. Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness. ASME Journal of Vibration and Acoustics, 136, 041006 (2014)

    Article  Google Scholar 

  21. Yang, X. D. and Zhang, W. Nonlinear dynamics of axially moving beam with coupled longitudinaltransversal vibrations. Nonlinear Dynamics, 78, 2547–2556 (2014)

    Article  Google Scholar 

  22. Yang, X. D., Zhang, W., and Melnik, R. V. N. Energetics and invariants of axially deploying beam with uniform velocity. AIAA Journal, 54, 2181–2187 (2016)

    Google Scholar 

  23. Wang, X. Numerical analysis of moving orthotropic thin plates. Computers and Structures, 70, 467–486 (1999)

    Article  MATH  Google Scholar 

  24. Zhou, Y. F. and Wang, Z. M. Transverse vibration characteristics of axially moving viscoelastic plate. Applied Mathematics and Mechanics (English Edition), 28 (2), 209–218 (2007) DOI 10.1007/s10483-007-0209-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, Y. D. and Zhang, J. Z. Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field. Applied Mathematics and Mechanics (English Edition), 34 (11), 1405–1420 (2013) DOI 10.1007/s10483-013-1755-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Hatami, S., Ronagh, H., and Azhari, M. Exact free vibration analysis of axially moving viscoelastic plates. Computers and Structures, 86, 1738–1746 (2008)

    Article  Google Scholar 

  27. Banichuk, N., Jeronen, J., Neittaanmai, P., and Tuovinen, T. On the instability of an axially moving elastic plate. International Journal of Solids and Structures, 47, 91–99 (2010)

    Article  MATH  Google Scholar 

  28. Tang, Y. Q. and Chen, L. Q. Natural frequencies, modes and critical speeds of in-plane moving plates. Advances in Vibration Engineering, 11, 229–244 (2012)

    Google Scholar 

  29. Wang, Y. Q., Liang, L., and Guo, X. H. Internal resonance of axially moving laminated circular cylindrical shells. Journal of Sound and Vibration, 332, 6434–6450 (2013)

    Article  Google Scholar 

  30. Wang, L. and Ni, Q. Vibration and stability of an axially moving beam immersed in fluid. International Journal of Solids and Structures, 45, 1445–1457 (2008)

    Article  MATH  Google Scholar 

  31. Wang, Y. Q., Guo, X. H., Sun, Z., and Li, J. Stability and dynamics of axially moving unidirectional plates partially immersed in a liquid. International Journal of Structural Stability and Dynamics, 14, 1450010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ni, Q., Li, M., Tang, M., and Wang, L. Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. Journal of Sound and Vibration, 333, 2543–2555 (2014)

    Article  Google Scholar 

  33. Wang, Y. Q., Xue, S. W., Huang, X. B., and Du, W. Vibrations of axially moving vertical rectangular plates in contact with fluid. International Journal of Structural Stability and Dynamics, 16, 1450092 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Du, W., Huang, X., and Xue, S. Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid. Acta Mechanica Solida Sinica, 28, 706–721 (2015)

    Article  Google Scholar 

  35. Wang, Y. Q., Huang, X. B., and Li, J. Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. International Journal of Mechanical Sciences, 110, 201–216 (2016)

    Article  Google Scholar 

  36. Wang, Y. Q. and Zu, J. W. Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. International Journal of Applied Mechanics, 9, 1750005 (2017)

    Article  Google Scholar 

  37. Wang, Y. Q. and Zu, J. W. Nonlinear steady-state responses of longitudinally travelling functionally graded material plates in contact with liquid. Composite Structures, 164, 130–144 (2017)

    Article  Google Scholar 

  38. Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  39. Ergin, A. and Ugrlu, B. Linear vibration analysis of cantilever plates partially submerged in fluid. Journal of Fluids and Structures, 17, 927–939 (2003)

    Article  Google Scholar 

  40. Tang, Y. Q. and Chen, L. Q. Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3:1 internal resonance. Nonlinear Dynamics, 69, 159–172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rao, S. S. Vibration of Continuous Systems, John Wiley & Sons, Hoboken (2007)

    Google Scholar 

  42. Amabili, M. and Kwak, M. Free vibrations of circular plates coupled with liquids: revising the Lamb problem. Journal of Fluids and Structures, 10, 743–761 (1996)

    Article  Google Scholar 

  43. Kwak, M. K. Hydroelastic vibration of rectangular plates. Journal of Applied Mechanics, 63, 110–115 (1996)

    Article  MATH  Google Scholar 

  44. Cheung, Y. K. and Zhou, D. Coupled vibratory characteristics of a rectangular container bottom plate. Journal of Fluids and Structures, 14, 339–357 (2000)

    Article  Google Scholar 

  45. Wolfram, S. The Mathematica Book, Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  46. Zhou, D. and Cheung, Y. K. Vibration of vertical rectangular plate in contact with water on one side. Earthquake Engineering and Structural Dynamics, 29, 693–710 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11302046 and 11672071) and the Fundamental Research Funds for the Central Universities (No.N150504003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zu, J.W. Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Appl. Math. Mech.-Engl. Ed. 38, 625–646 (2017). https://doi.org/10.1007/s10483-017-2192-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2192-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation