Skip to main content
Log in

Nonlinear dynamic singularity analysis of two interconnected synchronous generator system with 1:3 internal resonance and parametric principal resonance

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The bifurcation analysis of a simple electric power system involving two synchronous generators connected by a transmission network to an infinite-bus is carried out in this paper. In this system, the infinite-bus voltage are considered to maintain two fluctuations in the amplitude and phase angle. The case of 1:3 internal resonance between the two modes in the presence of parametric principal resonance is considered and examined. The method of multiple scales is used to obtain the bifurcation equations of this system. Then, by employing the singularity method, the transition sets determining different bifurcation patterns of the system are obtained and analyzed, which reveal the effects of the infinite-bus voltage amplitude and phase fluctuations on bifurcation patterns of this system. Finally, the bifurcation patterns are all examined by bifurcation diagrams. The results obtained in this paper will contribute to a better understanding of the complex nonlinear dynamic behaviors in a two-machine infinite-bus (TMIB) power system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P. M. and Fouad, A. A. Power System Control and Stability, Wiley-IEEE Press, New York (2002)

    Book  Google Scholar 

  2. Chiang, H. D. Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications, John Wiley, New York (2011)

    Google Scholar 

  3. Zhang, J., Wen, J. Y., and Cheng, S. J. Power system nonlinearity modal interaction by the normal forms of vector fields. Journal of Electrical Engineering & Technology, 3(1), 8–13 (2008)

    Article  Google Scholar 

  4. Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations Vector Fields, Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  5. Moon, F. C. Chaos Vibrations, an Introduction for Applied Scientists and Engineers, Wiley-InterScience, New York (1987)

    Google Scholar 

  6. Nayfeh, A. H. Introduction to Perturbation Techniques, Wiley-Interscience, New York (1981)

    MATH  Google Scholar 

  7. Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  8. Nayfeh, M. A., Hamdan, A. M. A., and Nayfeh, A. H. Chaos and instability in a power system: subharmonic-resonant case. Nonlinear Dynamics, 2, 53–72 (1991)

    Article  Google Scholar 

  9. Nayfeh, M. A., Hamdan, A. M. A., and Nayfeh, A. H. Chaos and instability in a power system: primary resonant case. Nonlinear Dynamics, 1, 313–339 (1990)

    Article  Google Scholar 

  10. Duan, X. Z., Wen, J. Y., and Cheng, S. J. Bifurcation analysis for an SMIB power system with series capacitor compensation associated with sub-synchronous resonance. Science in China Series E-Technological Sciences, 52(2), 436–441 (2009)

    Article  MATH  Google Scholar 

  11. Chen, H. K., Lin, T. N., and Chen, J. H. Dynamic analysis, controlling chaos and chaotification of an SMIB power system. Chaos Solitons & Fractals, 24, 1307–1315 (2005)

    Article  MATH  Google Scholar 

  12. Wang, J. L., Mei, S. W., Lu, Q., and Teo, K. L. Dynamical behavior and singularities of a singlemachine infinite-bus power system. Acta Mathematicae Applicatae Sinica (English Series), 20(3), 457–476 (2004)

    Article  MathSciNet  Google Scholar 

  13. Chen, X. W., Zhang, W. N., and Zhang, W. D. Chaotic and sub-harmonic oscillations of a nonlinear power system. IEEE Transactions on Circuits and Systems-II, 52(12), 811–815 (2005)

    Article  Google Scholar 

  14. Wei, D. Q., Zhang, B., Qiu, D. Y., and Luo, X. S. Effect of noise on erosion of safe basin in power system. Nonlinear Dynamics, 61, 477–482 (2010)

    Article  MATH  Google Scholar 

  15. Zhang, J., Wen, J. Y., and Cheng, S. J. Power system nonlinearity modal interaction by the normal forms of vector fields. Journal of Electrical Engineering & Technology, 3(1), 8–13 (2008)

    Article  Google Scholar 

  16. Revel, G., Leon, A. E., Alonso, D. M., and Moiola, J. L. Bifurcation analysis on a multimachine power system model. IEEE Transcations on Circuits and Systems-I: Regular Papers, 57(4), 937–949 (2010)

    Article  MathSciNet  Google Scholar 

  17. Jiang, N. Q. and Chiang, H. D. Damping torques of multi-machine power systems during transient behaviors. IEEE Transactions on Power Systems, 29(3), 1186–1193 (2014)

    Article  Google Scholar 

  18. Amano, H., Kumano T., Inoue, T., and Taniguchi, H. Proposal of nonlinear stability indices of power swing oscillation in a multi-machine power system. Electrical Enginerring in Japan, 151(4), 215–221 (2005)

    Google Scholar 

  19. Senjyu, T., Morishima, Y., Arakaki, T., and Uezato, K. Improvement of multi-machine power system stability using sdaptive PSS. Electric Power Components and Systems, 30, 361–375 (2002)

    Article  Google Scholar 

  20. Yu, Y. P., Min, Y., and Chen, L. Analysis of forced power oscillation steady-state response properties in multi-machine power systems (in Chinese). Automation of Electric Power Systems, 33(22), 5–9 (2009)

    MATH  Google Scholar 

  21. Lin, C. M., Vittal, V., Kliemann, W., and Fouad, A. A. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields. IEEE Transactions on Power Systems, 11(2), 781–787 (1996)

    Article  Google Scholar 

  22. Saha, S., Fouad, A. A., Kliemann, W. H., and Vittal, V. Stability boundary approximation of a power system using the real normal form of vector fields. IEEE Transactions on Power Systems, 12(2), 797–802 (1997)

    Article  Google Scholar 

  23. Thapar, J., Vittal, V., Kliemann, W., and Fouad, A. A. Application of normal form of vector fields to predict inter-area separation in power systems. IEEE Transactions on Power Systems, 12(2), 844–850 ( 1997)

  24. Deng, J. X. and Zhao, L. L. Study on the second order non-linear interaction of the critical inertial modes (in Chinese). Proceeding of the CSEE, 25(7), 75–80 (2005)

    Google Scholar 

  25. Dobson, I., Zhang, J. F., Greene, S., Engdahl, H., and Sauer, P. W. Is strong modal resonance a precursor to power system oscillation. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48(3), 340–349 (2001)

    Article  Google Scholar 

  26. Li, X. Y., Chen, Y. S., and Wu, Z. Q. Singular analysis of bifurcation of nonlinear normal modes for a class of systems with dual internal resonances. Applied Mathematics and Mechanics (English Edition), 23(10, 1122–1133 (2002) DOI 10.1007/BF02437660

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X. Y., Ji, J. C., and Hansen, C. H. Non-linear normal modes and their bifurcation of a two DOF system with quadratic and cubic non-linearity. International Journal of Non-Linear Mechanics, 41, 1028–1038 (2006)

    Article  MATH  Google Scholar 

  28. Li, X. Y., Chen, Y. S., and Wu, Z. Q. Non-linear normal modes and their bifurcation of a class of systems with three double of pure imaginary roots and dual internal resonances. International Journal of Non-Linear Mechanics, 39, 189–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nayfeh, A. H., Lacarbonara, W., and Chin, C. Nonlinear normal modes of buckled beams: threeto-one and one-to-one internal resonance. Nonlinear Dynamics, 18, 253–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuan, B. and Sun, Q. H. Chaos in the multi-machine power system (in Chinese). Automation of Electric Power System, 19(2), 26–31 (1995)

    Google Scholar 

  31. Ueda, Y. and Ueda, Y. Nonlinear resonance in basin portraits of two coupled swings under periodic forcing. International Journal of Bifurcation and Chaos, 8(6), 1183–1197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, Y. S. Nonlinear Vibration (in Chinese), Higher Education Press, Beijing (2002)

    Google Scholar 

  33. Chen, Y. S. and Leung, A. Y. T. Bifurcation and Chaos in Engineering, Springer-Verlag, London (1998)

    Book  MATH  Google Scholar 

  34. Golubitsky, M. and Schaeffer, D. G. Singluarities and Groups in Bifurcation Theory-I, Springer-Verlag, New York (1984)

    Google Scholar 

  35. Qin, Z. H., Chen, Y. S., and Li, J. Singularity analysis of a two-dimensional elastic cable with 1:1 internal resonance. Applied Mathematics and Mechanics (English Edition), 31(2), 143–150 (2010) DOI 10.1007/s10483-010-0202-z

    Article  MathSciNet  MATH  Google Scholar 

  36. Qin, Z. H. and Chen, Y. S. Singular analysis of bifurcation systems with two parameters. Acta Mechanica Sinica, 26(3) 501–507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 10632040)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, Y. & Hou, L. Nonlinear dynamic singularity analysis of two interconnected synchronous generator system with 1:3 internal resonance and parametric principal resonance. Appl. Math. Mech.-Engl. Ed. 36, 985–1004 (2015). https://doi.org/10.1007/s10483-015-1965-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1965-7

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation