Skip to main content
Log in

Line-integral representations for extended displacements, stresses, and interaction energy of arbitrary dislocation loops in transversely isotropic magneto-electro-elastic bimaterials

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic composite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displacements, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in transversely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezomagnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nan, C. W., Bichurin, M. I., Dong, S. X., Viehland, D., and Srinivasan, G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics, 103, 031101 (2008)

    Article  Google Scholar 

  2. Ma, J., Hu, J. M., Li, Z., and Nan, C. W. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Advanced Materials, 23, 1062–1087 (2011)

    Article  Google Scholar 

  3. Yuan, J. H., Pan, E., and Chen, W. Q. Line-integral representations for the elastic displacements, stresses and interaction energy of arbitrary dislocation loops in transversely isotropic bimaterials. International Journal of Solids and Structures, 50, 3472–3489 (2013)

    Article  Google Scholar 

  4. Chu, H. J., Pan, E., Han, X., Wang, J., and Beyerlein, I. J. Elastic fields of dislocation loops in three-dimensional anisotropic bimaterials. Journal of the Mechanics and Physics of Solids, 60, 418–431 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chu, H. J., Pan, E., Wang, J., and Beyerlein, I. J. Elastic displacement and stress fields induced by a dislocation of polygonal shape in an anisotropic elastic half-space. Journal of Applied Mechanics, 79, 1–9 (2012)

    Article  Google Scholar 

  6. Akarapu, S. and Zbib, H. M. Line-integral solution for the stress and displacement fields of an arbitrary dislocation segment in isotropic bi-materials in 3D space. Philosophical Magazine, 89, 2149–2166 (2009)

    Article  Google Scholar 

  7. Tan, E. H. and Sun, L. Z. Stress field due to a dislocation loop in a heterogeneous thin filmsubstrate system. Modelling and Simulation in Materials Science and Engineering, 14, 993–1013 (2006)

    Article  Google Scholar 

  8. Gosling, T. J. and Willis, J. R. A line-integral representation for the stresses due to an arbitrary dislocation in an isotropic half-space. Journal of the Mechanics and Physics of Solids, 42, 1199–1221 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han, X. L., Pan, E., and Sangghaleh, A. Fields induced by three-dimensional dislocation loops in anisotropic magneto-electro-elastic bimaterials. Philosophical Magazine, 93, 3291–3313 (2013)

    Article  Google Scholar 

  10. Chen, W. Q., Pan, E., Wang, H. M., and Zhang, C. Z. Theory of indentation on multiferroic composite materials. Journal of the Mechanics and Physics of Solids, 58, 1524–1551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hou, P. F., Ding, H. J., and Chen, J. Y. Green’s functions for transversely isotropic magnetoelectroelastic media. International Journal of Engineering Science, 43, 826–858 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, W. Q., Lee, K. Y., and Ding, H. J. General solution for transversely isotropic magnetoelectro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 42, 1361–1379 (2004)

    Article  MATH  Google Scholar 

  13. Ding, H. J., Chen, W. Q., and Zhang, L. C. Elasticity of Transversely Isotropic Materials, Springer, New York (2006)

    MATH  Google Scholar 

  14. Fabrikant, V. I. A new form of the Green function for a transversely isotropic body. Acta Mechanica, 167, 101–111 (2004)

    Article  MATH  Google Scholar 

  15. Hirth, J. P. and Lothe, J. Theory of Dislocations, John Wiley & Sons, New York (1982)

    Google Scholar 

  16. Mura, T. Micromechanics of Defects in Solids, Martinus-Nijhoff Publishers, Dordrecht (1987)

    Book  Google Scholar 

  17. Yuan, J. H., Chen, W. Q., and Pan, E. Line-integral representations of the displacement and stress fields due to an arbitrary Volterra dislocation loop in a transversely isotropic elastic full space. International Journal of Solids and Structures, 50, 160–175 (2013)

    Article  Google Scholar 

  18. Han, X. L. and Pan, E. Fields produced by three-dimensional dislocation loops in anisotropic magneto-electro-elastic materials. Mechanics of Materials, 59, 110–125 (2013)

    Article  Google Scholar 

  19. Burgers, J. M. Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. Koninklijke Nederlandse Akademie van Wetenschappen, 42, 293–325 (1939)

    Google Scholar 

  20. Peach, M. and Koehler J. S. The forces exerted on dislocations and the stress fields produced by them. Physical Review, 80, 436–439 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  21. Blin, J. Energie mutuelle de deux dislocations. Acta Metallurgica, 3, 199–200 (1955)

    Article  Google Scholar 

  22. Barnett, D. M. and Lothe, J. Dislocations and line charges in anisotropic piezoelectric insulators. Physica Status Solidi, 67b, 105–111 (1975)

    Article  Google Scholar 

  23. Pan, E. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift für Angewandte Mathematik und Physik, 53, 815–838 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pan.

Additional information

Project supported by the National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (No. 2009BAG12A01-A03-2) and the National Natural Science Foundation of China (Nos. 10972196, 11090333, 11172273, and 11321202)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Jh., Chen, Wq. & Pan, E. Line-integral representations for extended displacements, stresses, and interaction energy of arbitrary dislocation loops in transversely isotropic magneto-electro-elastic bimaterials. Appl. Math. Mech.-Engl. Ed. 35, 1005–1028 (2014). https://doi.org/10.1007/s10483-014-1846-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1846-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation