Skip to main content
Log in

Cavitating/non-cavitating flows simulation by third-order finite volume scheme and power-law preconditioning method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rezgui, A., Cinnella, P., and Lerat, A. Third-order accurate finite volume schemes for Euler computations on curvilinear meshes. Computers & Fluids, 30, 875–901 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jameson, A., Schmidt, W., and Turkel, E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper, 1259 (1981)

  3. Turkel, E. Accuracy of schemes with non-uniform meshes for compressible fluid flows. Applied Numerical Mathematics, 2, 529–550 (1985)

    Article  MathSciNet  Google Scholar 

  4. Turkel, E., Yaniv, S., and Landau, U. Accuracy of Schemes for the Euler Equations with Nonuniform Meshes, ICASE Report, 85–59 (1985)

  5. Faille, E. A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Computational Methods in Applied Mechanical Engineering, 100, 275–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nejat, A. and Gooch, C. O. A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows. Journal of Computational Physics, 227, 2582–2609 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zingg, D., De-Rango, S., Nemec, M., and Pulliam, T. Comparison of several spatial discretizations for the Navier-Stokes equations. Journal of Computational Physics, 160, 683–704 (2000)

    Article  MATH  Google Scholar 

  8. Gooch, C. O. and Altena, M. V. A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. Journal of Computational Physics, 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  9. Lee, D. Local Preconditioning of the Euler and Navier-Stokes Equations, Ph. D. dissertation, University of Michigan, Michigan (1996)

    Google Scholar 

  10. Volpe, G. Performance of compressible flow codes at low Mach numbers. AIAA Journal, 31, 49–56 (1993)

    Article  MATH  Google Scholar 

  11. Blazek, J. Computational Fluid Dynamics: Principles and Applications, Elsevier, Netherlands (2001)

    MATH  Google Scholar 

  12. Chorin, A. J. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2, 12–26 (1967)

    Article  MATH  Google Scholar 

  13. Turkel, E. Preconditioning methods for solving the incompressible and low speed compressible equations. Journal of Computational Physics, 72, 227–298 (1987)

    Article  Google Scholar 

  14. Lee, W. T. Local Preconditioning of the Euler Equations, Ph. D. dissertation, University of Michigan, Michigan (1992)

    Google Scholar 

  15. Choi, Y. H. and Merkle, C. L. Application of preconditioning in viscous flows. Journal of Computational Physics, 105, 207–223 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leer, V. B., Lee, W. T., and Roe, P. Characteristic time-stepping or local preconditioning of the Euler equations. AIAA Paper, 1552 (1991)

  17. Leer, V. B. and Lee, D. Progress in local preconditioning of the Euler and Navier-Stokes equations. AIAA Paper, 3328 (1993)

  18. Weiss, J. M. and Smith, W. A. Preconditioning applied to variable and constant density flows. AIAA Journal, 33, 2050–2057 (1993)

    Article  Google Scholar 

  19. Zaccanti, M. R. Analysis and Design of Preconditioning Methods for the Euler Equations, Ph. D. dissertation, College of Engineering Mississippi State, Mississippi (1999)

    Google Scholar 

  20. Malan, A. G., Lewis, R. W., and Nithiarasu, P. An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: part I. theory and implementation. International Journal for Numerical Methods in Engineering, 54, 695–714 (2002)

    Article  MATH  Google Scholar 

  21. Malan, A. G., Lewis, R. W., and Nithiarasu, P. An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: part II. application. International Journal for Numerical Methods in Engineering, 54, 715–729 (2002)

    Article  MATH  Google Scholar 

  22. Esfahanian, V. and Akbarzadeh, P. Advanced investigation on design criteria of a robust, artificial compressibility and local preconditioning method for solving the inviscid incompressible flows. Proceeding of the Third International Conference on Modeling, Simulation and Applied Optimization (ICMSA09), Sharjah, U.A.E. (2009)

  23. Esfahanian, V. and Akbarzadeh, P. Local pressure preconditioning method for steady incompressible flows. International Journal of Computational Fluid Dynamics, 24, 169–186 (2010)

    Article  MathSciNet  Google Scholar 

  24. Esfahanian, V. and Akbarzadeh, P. Numerical investigation on a new local preconditioning method for solving the incompressible inviscid, noncavitating and cavitating flows. Journal of the Franklin Institute, 348, 1208–1230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Esfahanian, V. and Akbarzadeh, P. A local power-law preconditioning method for steady incompressible flows. Second International Conference on Energy Conversion and Conservation (CICME10), Hammamet, Tunisia, 22–25 (2010)

  26. Esfahanian, V. and Akbarzadeh, P. An improved progressive preconditioning method for steady non-cavitating and sheet-cavitating flows. International Journal for Numerical Methods in Fluids, 68, 210–232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiang, Q., Wu, S. P., Li, C. X., and Cao, N. Low-diffusion preconditioning scheme for numerical simulation of low-speed flows past airfoil. Applied Mathematics and Mechanics (English Edition), 32(5), 613–620 (2011) DOI 10.1007/s10483-011-1443-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Lessani, B., Ramboer, J., and Lacor, C. Efficient large-eddy simulations of low Mach number flows using preconditioning and multigrid. International Journal of Computational Fluid Dynamics, 18, 221–233 (2004)

    Article  MATH  Google Scholar 

  29. Elmahi, I., Gloth, O., Hanel, D., and Vilsmeier, R. A preconditioned dual time-stepping method for combustion problems. International Journal of Computational Fluid Dynamics, 22, 169–181 (2004)

    Article  MathSciNet  Google Scholar 

  30. Ahuja, V., Hosangadi, A., and Arunajatesan, S. Simulations of cavitating flows using hybrid unstructured meshes. Journal of Fluids Engineering, 123, 331–340 (2001)

    Article  Google Scholar 

  31. Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L., Hakimi, N., and Hirsch, C. Numerical simulation of cavitating flow in 2D and 3D inducer geometries. International Journal for Numerical Methods in Fluids, 48, 135–167 (2005)

    Article  MATH  Google Scholar 

  32. Coutier-Delgosha, O., Reboud, J. L., and Delannoy, Y. Numerical simulation of the unsteady behaviour of cavitating flows. International Journal for Numerical Methods in Fluids, 42, 527–548 (2003)

    MATH  Google Scholar 

  33. Huang, D. G. Preconditioned dual-time procedures and its application to simulating the flow with cavitations. Journal of Computational Physics, 223, 685–689 (2007)

    Article  MATH  Google Scholar 

  34. Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W. H., Gibeling, J., Venkateswaran, S., and Govindan, T. R. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29, 849–875 (2000)

    Article  MATH  Google Scholar 

  35. Merkle, C. L., Feng, J., and Buelow, P. E. O. Computational modelling of the dynamics of sheet cavitation. 3rd International Symposium on Cavitation, Grenoble, France (1998)

  36. Neaves, M. D. and Edwards, J. R. All-speed time-accurate underwater projectile calculations using a preconditioning algorithm. Journal of Fluids Engineering, 128, 284–296 (2006)

    Article  Google Scholar 

  37. Venkateswaran, S., Lindau, J. W., Kunz, R. F., and Merkle, C. L. Computation of multiphase mixture flows with compressibility effects. Journal of Computational Physics, 180, 54–77 (2002)

    Article  MATH  Google Scholar 

  38. Delannoy, Y. and Kueny, J. L. Two phase flow approach in unsteady cavitation modeling, cavitation and multiphase flow forum. ASME-FED, 98, 153–158 (1990)

    Google Scholar 

  39. Esfahanian, V. and Akbarzadeh, P. The Jameson’s numerical method for solving the incompressible viscous and inviscid flows by means of artificial compressibility and preconditioning method. Applied Mathematics and Computation, 206, 651–661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hoffmann, K. A. Computational Fluid Dynamics, Vol. I & II, EES, Wichita (2000)

  41. Turkel, E., Fiterman, A., and Leer, B. V. Preconditioning and the limit to the incompressible flow equations. ICASE Report, No. 191500, NASA, 93-42 (1993)

  42. Turkel, E., Vatsa, V. N., and Radespiel, R. Preconditioning methods for lowspeed flows. ICASE Report, No. 201605, NASA, 96-57 (1996)

  43. Morgan, K., Peraire, J., Peiro, J., and Zienkiewics, O. C. Adaptive remeshing applied to the solution of a shock interaction problem on a cylindrical leading edge. Computational Methods in Aeronautical Fluid Dynamics, Clarenden Press, Oxford, 327–344 (1990)

    Google Scholar 

  44. Goncalves, E. and Patella, R. F. Numerical simulation of cavitating flows with homogeneous models. Computers & Fluids, 38, 1682–1696 (2009)

    Article  MATH  Google Scholar 

  45. Coutier-Delgosha, O., Deniset, F., Astolfi, J. A., and Leroux, J. B. Numerical prediction of cavitating flow on a two-dimensional symmetrical hydrofoil and comparison to experiments. Journal of Fluids Engineering, 129, 279–292 (2007)

    Article  Google Scholar 

  46. Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L., Hakimi, N., and Hirsch, C. Stability of preconditioned Navier-Stokes equations associated with a cavitation model. Computers & Fluids, 34, 319–349 (2005)

    Article  MATH  Google Scholar 

  47. Coutier-Delgosha, O., Fortes-Patella, R., and Reboud, J. L. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. Journal of Fluids Engineering, 125, 38–45 (2003)

    Article  Google Scholar 

  48. Coutier-Delgosha, O., Fortes-Patella, R., and Reboud, J. L. Simulation of unsteady cavitation with a two-equation turbulence model including compressibility effects. Journal of Turbulence, 3, 058 (2002)

    Article  Google Scholar 

  49. Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L., Hofmann, M., and Stoffel, B. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition. Journal of Fluids Engineering, 125, 970–978 (2003)

    Article  Google Scholar 

  50. Leroux, J. B., Coutier-Delgosha, O., and Astolfi, J. A. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Physics of Fluids, 17, 052101 (2005)

    Article  Google Scholar 

  51. Reboud, J. L., Stutz, B., and Coutier, O. Cavitation: experiment and modeling of unsteady effects. 3rd International Symposium on Cavitation, Grenoble, France (1998)

  52. Song, C. and He, J. Numerical simulation of cavitating flows by single-phase flow approach. 3rd International Symposium on Cavitation, Grenoble, France (1998)

  53. Liu, T. G., Khoo, B. C., and Xie, W. F. Isentropic one-fluid modelling of unsteady cavitating flow. Journal of Computational Physics, 201, 80–108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shin, B. R. and Ikohagi, T. Numerical analysis of unsteady cavity flows around a hydrofoil. Proceedings of the 1999 3rd ASME/JSME Joint Fluids Engineering Conference, FEDSM’99, San Francisco, California, 18–23 (1999)

  55. Song, C. S. Current status of CFD for cavitating flows. Proceeding of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawai (2002)

  56. Ventikos, Y. and Tzabiras, G. A numerical method for the simulation of steady and unsteady cavitating flows. Computer & Fluids, 29, 63–88 (2000)

    Article  MATH  Google Scholar 

  57. Xie, W. F., Lu, T. G., and Khoo, B. C. Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified schmidt model. Computer & Fluids, 35, 1177–1192 (2006)

    Article  MATH  Google Scholar 

  58. Bernad, S., Susan-Resiga, R., Muntean, S., and Anton, I. Numerical analysis of the cavitating flows. Proceedings of the Romanian Academy, Series A, No. 12006, Romanian (2006)

  59. Hosangadi, A. and Ahuja, V. Numerical study of cavitation in cryogenic fluids. Journal of Fluids Engineering, 127, 267–281 (2005)

    Article  Google Scholar 

  60. Singhal, A. K., Athavale, M. M., Li, H., and Jiang, Y. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124, 617–624 (2002)

    Article  Google Scholar 

  61. Watanabe, S., Hidaka, T., Horiguchi, H., Furukawa, A., and Tsujimoto, Y. Steady analysis of the thermodynamic effect of partial cavitation using the singularity method. Journal of Fluids Engineering, 129, 121–127 (2007)

    Article  Google Scholar 

  62. Cheng, X. J. and Lu, C. J. On the partially cavitating flow around two dimensional hydrofoils. Applied Mathematics and Mechanics (English Edition), 21(12), 450–1459 (2000) DOI 10.1007/BF02459224

    Google Scholar 

  63. Stutz, B. and Reboud, J. L. Two-phase flow structure of sheet cavitation. Physics of Fluids, 9, 3678–3686 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gopalan, S. and Katz, J. Flow structure and modeling issues in the closure region of attached cavitation. Physics of Fluids, 12, 895–911 (1999)

    Article  Google Scholar 

  65. Coutier-Delgosha, O., Devillers, J. F., Pichon, T., Vabre, A., Woo, R., and Legoupil, S. Internal structure and dynamics of sheet cavitation. Physics of Fluids, 16, 017103 (2006)

    Article  Google Scholar 

  66. Jameson, A. Steady-state solution of the Euler equations for transonic flow, proceeding of transonic, shock, and multidimensional flows. Advances in Scientific Computing, Academic Press, 37–69 (1982)

  67. Manna, M. Three Dimensional High Resolution Compressible Flow Solver, Ph. D. dissertation, Catholic University of Louvain, Louvain (1992)

    Google Scholar 

  68. Somers, D. M. Design and Experimental Results for the s809, Report of National Renewable Energy Laboratory, NREL/SR-440-6918, NREL (1997)

  69. Hafez, M., Shatalov, A., and Wahba, E. Numerical simulations of incompressible aerodynamic flows using viscous/inviscid interaction procedures. Computer Methods in Applied Mechanics and Engineering, 195, 3110–3127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Hafez, M., Shatalov, A., and Nakajima, M. Improved numerical simulations of incompressible flows based on viscous/inviscid interaction procedures. Computer & Fluids, 36, 1588–1591 (2007)

    Article  MATH  Google Scholar 

  71. Abdo, M. and Mateescu, D. Low-Reynolds number aerodynamics of airfoils at incidence. 43rd AIAA Aerospace Sciences Meeting and Exhibit-Meeting Papers, Reno, Nevada, 3927–3953 (2005)

  72. Shen, Y. T. and Dimotakis, P. E. The influence of surface cavitation on hydrodynamic forces. 22nd American Towing Tank Conference, St. Johns, 44–53 (1989)

  73. Deshpande, M., Feng, J., and Merkle, C. L. Cavity flow predictions based on the Euler equations. Journal of Fluids Engineering, 116, 36–44 (1994)

    Article  Google Scholar 

  74. Krishnaswamy, P. Flow Modelling for Partially Cavitating Hydrofoils, Ph. D. dissertation, Technical University of Denmark, Denmark (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Akbarzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarzadeh, P. Cavitating/non-cavitating flows simulation by third-order finite volume scheme and power-law preconditioning method. Appl. Math. Mech.-Engl. Ed. 34, 209–228 (2013). https://doi.org/10.1007/s10483-013-1664-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1664-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation