Skip to main content
Log in

Genome analysis of probiotic bacteria for antibiotic resistance genes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ammor MS, Flórez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570

    CAS  PubMed  Google Scholar 

  • Ammor MS, Gueimonde M, Danielsen M, Zagorec M, van Hoek AH, Clara G, Mayo B, Margolles A (2008) Two different tetracycline resistance mechanisms, plasmid-carried tet (L) and chromosomally located transposon-associated tet (M), coexist in Lactobacillus sakei rits 9. Appl Environ Microbiol 74:1394–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf R, Shah NP (2011) Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int Food Res J 18:837–853

    Google Scholar 

  • Barbosa TM, Scott KP, Flint HJ (1999) Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. Environ Microbiol 1:53–64

    CAS  PubMed  Google Scholar 

  • Billington SJ, Songer JG, Jost BH (2002) Widespread distribution of a Tet W determinant among tetracycline-resistant isolates of the animal pathogen Arcanobacterium pyogenes. Antimicrob Agents Chemother 46:1281–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borriello S, Hammes W, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36:775–780

    CAS  PubMed  Google Scholar 

  • Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O’Toole PW (2019) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 85:e01738-e11718

    CAS  PubMed  Google Scholar 

  • Çataloluk O, Gogebakan B (2004) Presence of drug resistance in intestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiol Lett 236:7–12

    PubMed  Google Scholar 

  • Ceccarelli D, van Essen-Zandbergen A, Veldman KT, Tafro N, Haenen O, Mevius DJ (2017) Chromosome-based blaOXA-48-like variants in Shewanella species isolates from food-producing animals, fish, and the aquatic environment. Antimicrob Agents Chemother 61:e01013-01016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Zhang Z-Y, Ke D, Jian-Ping Y, Xiao-Kui G (2009) Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. Biomed Environ Sci 22:401–412

    Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61:1636–1643

    CAS  PubMed  Google Scholar 

  • Clewell DB, Flannagan SE, Jaworski DD (1995) Unconstrained bacterial promiscuity: the Tn916–Tn1545 family of conjugative transposons. Trends Microbiol 3:229–236

    CAS  PubMed  Google Scholar 

  • Comunian R, Daga E, Dupré I, Paba A, Devirgiliis C, Piccioni V, Perozzi G, Zonenschain D, Rebecchi A, Morelli L (2010) Susceptibility to tetracycline and erythromycin of Lactobacillus paracasei strains isolated from traditional Italian fermented foods. Int J Food Microbiol 138:151–156

    CAS  PubMed  Google Scholar 

  • Das DJ, Shankar A, Johnson JB, Thomas S (2019) Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition 69:110567

    PubMed  Google Scholar 

  • Davidson BE, Kordias N, Dobos M, Hillier AJ (1996) Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek 70:161–183

    CAS  PubMed  Google Scholar 

  • Devirgiliis C, Barile S, Caravelli A, Coppola D, Perozzi G (2010) Identification of tetracycline-and erythromycin-resistant gram-positive cocci within the fermenting microflora of an Italian dairy food product. J Appl Microbiol 109:313–323

    CAS  PubMed  Google Scholar 

  • Devirgiliis C, Zinno P, Perozzi G (2013) Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 4:1–13

    Google Scholar 

  • Falentin H, Deutsch S-M, Jan G, Loux V, Thierry A, Parayre S, Maillard M-B, Dherbécourt J, Cousin FJ, Jardin J (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy actinobacterium with food and probiotic applications. PLoS ONE 5:e11748

    PubMed  PubMed Central  Google Scholar 

  • FAO/WHO. Guidelines for the evaluation of probiotics in food accessed. Available online http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf

  • Faron ML, Ledeboer NA, Buchan BW (2016) Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant Enterococcus in the health care setting. J Clin Microbiol 54:2436–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767

    PubMed  PubMed Central  Google Scholar 

  • Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Lu Y, Teng K-L, Chen M-L, Zheng H-J, Zhu Y-Q, Zhong J (2011) Complete genome sequence of Lactococcus lactis subsp. lactis CV56, a probiotic strain isolated from the vaginas of healthy women. J Bacteriol 193:2886–2887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gevers D, Danielsen M, Huys G, Swings J (2003) Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl Environ Microbiol 69:1270–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girlich D, Leclercq R, Naas T, Nordmann P (2007) Molecular and biochemical characterization of the chromosome-encoded class A β-lactamase BCL-1 from Bacillus clausii. Antimicrob Agents Chemother 51:4009–4014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202

    PubMed  PubMed Central  Google Scholar 

  • Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. https://doi.org/10.2903/j.efsa.2012.2740

  • Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain J-M (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220

    PubMed  PubMed Central  Google Scholar 

  • Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6:39–51

    CAS  Google Scholar 

  • Hummel AS, Hertel C, Holzapfel WH, Franz CM (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73:730–739

    CAS  PubMed  Google Scholar 

  • Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet (M) and erm (B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166

    CAS  PubMed  Google Scholar 

  • Kang M-S, Yeu J-E, Hong S-P (2019) Safety evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis. Int J Mol Sci 20:2693

    CAS  PubMed Central  Google Scholar 

  • Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, Meile L (2006) Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29:145–155

    CAS  PubMed  Google Scholar 

  • Kazimierczak KA, Flint HJ, Scott KP (2006) Comparative analysis of sequences flanking tet (W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 50:2632–2639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JF, Jeong H, Park S-Y, Kim S-B, Park YK, Choi S-K, Ryu C-M, Hur C-G, Ghim S-Y, Oh TK (2010) Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. J Bacteriol 192:6103–6104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiwaki M, Sato T (2009) Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int J Food Microbiol 134:211–215

    CAS  PubMed  Google Scholar 

  • Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Müller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912

    CAS  PubMed  Google Scholar 

  • Korhonen J (2010) Antibiotic resistance of lactic acid bacteria. PhD Thesis. UEF Electronic Publicatons, ISBN: 978-952-61-0097-5. Available online http://epublications.uef.fi/pub/urn_isbn_978-952-61-0097-5/urn_isbn_978-952-61-0097-5.pdf

  • Kuebutornye FK, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828

    CAS  PubMed  Google Scholar 

  • Lahtinen SJ, Boyle RJ, Margolles A, Frias R, Gueimonde M (2009) Safety assessment of probiotics. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, New York. https://doi.org/10.1007/978-0-387-79058-9_31

    Chapter  Google Scholar 

  • Leavis HL, Willems RJ, Van Wamel WJ, Schuren FH, Caspers MP, Bonten MJ (2007) Insertion sequence–driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. PLoS Pathog 3:e7

    PubMed  PubMed Central  Google Scholar 

  • Ledina T, Mohar-Lorbeg P, Golob M, Djordjevic J, Bogovič-Matijašić B, Bulajic S (2018) Tetracycline resistance in lactobacilli isolated from Serbian traditional raw milk cheeses. J Food Sci Technol 55:1426–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N-K, Kim W-S, Paik H-D (2019) Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 28:1297–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang HH (2008) Abstr. 108th Gen. Meet. : American Society Microbiology & (Abstract No, 513.)

  • Luo H, Wan K, Wang HH (2005) High-frequency conjugation system facilitates biofilm formation and pAMβ1 transmission by Lactococcus lactis. Appl Environ Microbiol 71:2970–2978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG (2013) Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12:1–11

    Google Scholar 

  • Masco L, Van Hoorde K, De Brandt E, Swings J, Huys G (2006) Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94

    CAS  PubMed  Google Scholar 

  • Mater DD, Langella P, Corthier G, Flores M-J (2008) A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 14:123–127

    CAS  PubMed  Google Scholar 

  • Melville CM, Brunel R, Flint HJ, Scott KP (2004) The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. J Bacteriol 186:3656–3659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercenier A, Pouwels P, Chassy B (1994) Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. In: Gasson MJ, De Vos WM (eds) Genetics and biotechnology of lactic acid bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1340-3_6

    Chapter  Google Scholar 

  • Moubareck C, Gavini F, Vaugien L, Butel M, Doucet-Populaire F (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55:38–44

    CAS  PubMed  Google Scholar 

  • Murata M, Ohno S, Kumano M, Yamane K, Ohki R (2003) Multidrug resistant phenotype of Bacillus subtilis spontaneous mutants isolated in the presence of puromycin and lincomycin. Can J Microbiol 49:71–77

    CAS  PubMed  Google Scholar 

  • Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J (2011) Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol 62:1081–1089

    CAS  PubMed  Google Scholar 

  • Nicas T, Cole C, Preston D, Schabel A, Nagarajan R (1989) Activity of glycopeptides against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 33:1477–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira LC, Saraiva TD, Soares SC, Ramos RT, Sá PH, Carneiro AR, Miranda F, Freire M, Renan W, Júnior AF (2014) Genome sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-producing strain. Genome Announc 2:e00980-e1014

    PubMed  PubMed Central  Google Scholar 

  • Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA - Opinion of the Scientific Committee. https://doi.org/10.2903/j.efsa.2007.587

  • O’Toole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008:1–9

    Google Scholar 

  • Ouoba LII, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121:217–224

    CAS  PubMed  Google Scholar 

  • Pan L, Hu X, Wang X (2011) Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods. Food Control 22:1316–1321

    CAS  Google Scholar 

  • Perreten V, Kollöffel B, Teuber M (1997a) Conjugal transfer of the Tn916-like transposon TnFO1 from Enterococcus faecalis isolated from cheese to other gram-positive bacteria. Syst Appl Microbiol 20:27–38

    CAS  Google Scholar 

  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M (1997b) Antibiotic resistance spread in food. Nature 389:801

    CAS  PubMed  Google Scholar 

  • Pflughoeft KJ, Versalovic J (2012) Human microbiome in health and disease. Annu Rev Pathol 7:99–122

    CAS  PubMed  Google Scholar 

  • Poirel L, Bonnin RA, Nordmann P (2012) Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 56:559–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres C (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111:234–240

    CAS  PubMed  Google Scholar 

  • Rosander A, Connolly E, Roos S (2008) Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol 74:6032–6040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saarela M, Mogensen G, Fonden R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    CAS  PubMed  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    CAS  PubMed  Google Scholar 

  • Sgorbati B, Scardovi V, Leblanc DJ (1982) Plasmids in the genus Bifidobacterium. Microbiology 128:2121–2131

    CAS  Google Scholar 

  • Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R (2014) Antibiotic resistance among commercially available probiotics. Food Res Int 57:176–195

    CAS  Google Scholar 

  • Shin J, Noh J-R, Chang D-H, Kim Y-H, Kim MH, Lee ES, Cho S, Ku BJ, Rhee M-S, Kim B-C (2019) Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front Microbiol 10:1137

    PubMed  PubMed Central  Google Scholar 

  • Swenson J, Facklam R, Thornsberry C (1990) Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus, and Lactobacillus species. Antimicrob Agents Chemother 34:543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76:115–137

    CAS  PubMed  Google Scholar 

  • Thomas CM, Versalovic J (2010) Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes 1:148–163

    PubMed  PubMed Central  Google Scholar 

  • Thumu SCR, Halami PM (2012) Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek 102:541–551

    CAS  PubMed  Google Scholar 

  • Toomey N, Bolton D, Fanning S (2010) Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 161:127–135

    CAS  PubMed  Google Scholar 

  • van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschoten M, Brummer RJ, Kleerebezem M (2011) Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci USA 108:4562–4569

    PubMed  Google Scholar 

  • Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, Yousef A, Bakaletz LO (2006) Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 254:226–231

    CAS  PubMed  Google Scholar 

  • Werner G, Freitas AR, Coque TM, Sollid JE, Lester C, Hammerum AM, Garcia-Migura L, Jensen LB, Francia MV, Witte W (2010) Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J Antimicrob Chemother 66:273–282

    PubMed  Google Scholar 

  • Wilcks A, Andersen SR, Licht TR (2005) Characterization of transferable tetracycline resistance genes in Enterococcus faecalis isolated from raw food. FEMS Microbiol Lett 243:15–19

    CAS  PubMed  Google Scholar 

  • Yasutake T, Kumagai T, Inoue A, Kobayashi K, Noda M, Orikawa A, Matoba Y, Sugiyama M (2016) Characterization of the LP28 strain-specific exopolysaccharide biosynthetic gene cluster found in the whole circular genome of Pediococcus pentosaceus. Biochem Biophys Rep 5:266–271

    PubMed  PubMed Central  Google Scholar 

  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou N, Zhang J, Fan M, Wang J, Guo G, Wei X (2012) Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. J Dairy Sci 95:4775–4783

    CAS  PubMed  Google Scholar 

  • Zonenschain D, Rebecchi A, Morelli L (2009) Erythromycin-and tetracycline-resistant lactobacilli in Italian fermented dry sausages. J Appl Microbiol 107:1559–1568

    CAS  PubMed  Google Scholar 

  • Zou H, Zhou Z, Xia H, Zhao Q, Li X (2019) Characterization of chromosome-mediated BlaOXA-894 in Shewanella xiamenensis isolated from pig wastewater. Int J Environ Res Public Health 16:3768

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks of Zoonotic Diseases Research Center Yazd, Iran for support.

Funding

There are no finding sources.

Author information

Authors and Affiliations

Authors

Contributions

MF-B participated in the design of the study, data analysis and the draft the manuscript, SN carried out data analysis, AA participated in data analysis.

Corresponding author

Correspondence to Mehdi Fatahi-Bafghi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

The article does not contain any studies in patients by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatahi-Bafghi, M., Naseri, S. & Alizehi, A. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie van Leeuwenhoek 115, 375–389 (2022). https://doi.org/10.1007/s10482-021-01703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01703-7

Keywords

Navigation