Skip to main content
Log in

Micromonospora rubida sp. nov., a novel actinobacterium isolated from soil of Harbin

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinobacterium, designated strain NEAU-HG-1T, was isolated from soil collected from Harbin, Heilongjiang Province, Northeast China and characterised using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-HG-1T belonged to the genus Micromonospora, and shared high sequence similarities with Micromonospora auratinigra DSM 44815T (98.9%) and Micromonospora coerulea DSM 43143T (98.7%). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus Micromonospora. Cell wall contained meso-diaminopimelic acid and the whole-cell sugars were arabinose and xylose. The polar lipid contained diphosphatidylglycerol, phosphatidylethanolamine, glycolipid and phosphatidylinositol. The predominant menaquinones were MK-10(H2), MK-10(H4) and MK-10(H6). The major fatty acids were C17:0 cycle, iso-C15:0, and iso-C16:0. Furthermore, strain NEAU-HG-1T displayed a DNA–DNA relatedness of 33.8 ± 2.2% with M. coerulea DSM 43143T. The level of digital DNA–DNA hybridization between strain NEAU-HG-1T and M. auratinigra DSM 44815T was 27.2% (24.8–29.7%). The value was well below the criteria for species delineation of 70% for dDDH. Whole-genome average nucleotide identity analyses result also indicated that the isolate should be assigned to a new species under the genus Micromonospora. Therefore, it is concluded that strain NEAU-HG-1T represents a novel species of the genus Micromonospora, for which the name Micromonospora rubida sp. nov. is proposed, with NEAU-HG-1T (= CGMCC 4.7479T = JCM 32386T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The GenBank/EMBL/DDBJ Accession Number for the 16S rRNA gene sequence of strain NEAU-HG-1T is MG753996. The GenBank/EMBL/DDBJ accession number for the partial gyrB gene sequence of strain NEAU-HG-1T is MW091032. The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAAALO000000000. The version described in this paper is version JAAALO000000000.1.

Abbreviations

ANI:

Average nucleotide identity

MEGA:

Molecular evolutionary genetics analysis

ISCC-NBS:

Inter-society color council-national bureau of standards

TLC:

Thin-layer chromatography

GC–MS:

Gas chromatography–mass spectrometer

ISP:

International Streptomyces project

BA:

Bennett’s agar

NA:

Nutrient agar

CGMCC:

China general microbiological culture collection center

DSM:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

dDDH:

Digital DNA:DNA hybridization

DPG:

Ddiphosphatidylglycerol

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

GL:

Glycolipid

GY:

Glucose–yeast extract medium

JCM:

Japan collection of microorganisms

SSC:

Saline-sodium citrate

UPL:

Unknown phosphoglycolipid

PIM:

Phosphatidylinositol mannosides

UL:

Unidentified lipid

References

  • Awakawa T, Fujita N, Hayakawa M, Ohnishi Y, Horinouchi S (2011) Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. ChemBioChem 12:439–448

    CAS  PubMed  Google Scholar 

  • Ay H, Nouioui I, Klenk HP, Cetin D, Igual JM, Sahin N, Isik K (2020) Genome-based classification of Micromonospora craterilacus sp. nov., a novel actinobacterium isolated from Nemrut Lake. Antonie Van Leeuwenhoek 113:791–801

    CAS  PubMed  Google Scholar 

  • Becerril A, Álvarez S, Braña AF, Rico S, Díaz M, Santamaría RI, Salas JA, Méndez C (2018) Uncovering production of specialized metabolites by Streptomyces argillaceus: Activation of cryptic biosynthesis gene clusters using nutritional and genetic approaches. PLoS ONE 13:e0198145

    PubMed  PubMed Central  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Li CX, Tan KF, Liu CZ, Xu X, Zhang SY, Wang XJ, Zhao JW, Xiang WS (2020) Characterization, phylogenetic analyses and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang Province, China. Plant Dis. https://doi.org/10.1094/PDIS-12-19-2557-RE

    Article  PubMed  Google Scholar 

  • Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M (2018) Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 8:525

    PubMed  PubMed Central  Google Scholar 

  • Cerny G (1978) Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:113–122

    CAS  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324

    PubMed  Google Scholar 

  • Collins MD (1985) Chemical methods in bacterial systematics. In: Goodfellow M, Minnikin DE (eds) Isoprenoid quinone analyses in bacterial classification and identification. Academic Press, London, pp 267–284

    Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315

    CAS  PubMed  Google Scholar 

  • Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Google Scholar 

  • Genilloud O (2012) Genus I. Micromonospora Ørskov 1923, 156AL. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5 The Actinobacteria, Part B pp.1039–1057 Edited by Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB. New York: Springer

  • Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Google Scholar 

  • Guan XJ, Liu CX, Zhao JW, Fang BZ, Zhang YJ, Li LJ, Jin PJ, Wang XJ, Xiang WS (2015) Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie Van Leeuwenhoek 107:1119–1126

    CAS  PubMed  Google Scholar 

  • Harayama S, Yamamoto S (1996) Phylogenetic identification of Pseudomonas strains based on a comparison of gyrB and rpoD sequences. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. ASM Press, Washington, pp 250–258

    Google Scholar 

  • Huang WM (1996) Bacterial diversity based on type II DNA topoisomerase genes. Annu Rev Genet 30:79–107

    CAS  PubMed  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    CAS  PubMed  Google Scholar 

  • Igarashi Y, Trujillo ME, Martínez-Molina E, Yanase S, Miyanaga S, Obata T, Sakurai H, Saiki I, Fujita T, Furumai T (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702–3705

    CAS  PubMed  Google Scholar 

  • Intra B, Panbangred W, Inahashi Y, Také A, Mori M, Ōmura S, Matsumoto A (2020) Micromonospora pelagivivens sp. nov., a new species of the genus Micromonospora isolated from deep-sea sediment in Japan. Int J Syst Evol Microbiol 70:3069–3075

    CAS  PubMed  Google Scholar 

  • Jia FY, Liu CX, Wang XJ, Zhao JW, Zhang LQF, J, Gao RX, Xiang WS, (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408

    CAS  PubMed  Google Scholar 

  • Jin LY, Zhao Y, Song W, Duan LP, Jiang SW, Wang XJ, Zhao JW, Xiang WS (2019) Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 69:688–695

    CAS  PubMed  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai H, Tamura T, Harayama S (2000) Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134

    CAS  PubMed  Google Scholar 

  • Kawamoto I, Yamamoto M, Nara T (1983) Micromonospora olivasterospora sp. nov. Int J Syst Bacteriol 33:107–112

    Google Scholar 

  • Kelly KL (1964) Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colours. US Government Printing Office, Washington

    Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N, Thawai C (2015) Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 65:3818–3823

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Leifson E (1960) Atlas of bacterial flagellation. Q Rev Biol 242

  • Li L, Hong K (2016) Micromonospora ovatispora sp. nov. isolated from mangrove soil. Int J Syst Evol Microbiol 66:889–893

    CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yan R, Fu Y, Wang X, Zhang J, Xiang W (2019) Antifungal, plant growth-promoting, and genomic properties of an endophytic actinobacterium Streptomyces sp. NEAU-S7GS2. Front Microbiol 10:2077

    PubMed  PubMed Central  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of gram-positive bacteria. Lett Appl Microbiol 30:178–182

    CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

    PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60

    Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Google Scholar 

  • Nimaichand S, Zhang YG, Cheng J, Li L, Zhang DF, Zhou EM, Dong L, Ningthoujam DS, Li WJ (2013) Micromonospora kangleipakensis sp. nov., isolated from a sample of limestone quarry. Int J Syst Evol Microbiol 63:4546–4551

    CAS  PubMed  Google Scholar 

  • Ørskov J (1923) Investigations into the morphology of the ray fungi. Levin and Munksgaard, Copenhagen

    Google Scholar 

  • Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24:327–333

    CAS  PubMed  Google Scholar 

  • Piao CY, Zheng WW, Li Y, Liu CX, Jin L, Song W, Yan K, Wang XJ, Xiang WS (2017) Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 199:963–970

    CAS  PubMed  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saygin H, Ay H, Guven K, Cetin D, Sahin N (2020) Micromonospora deserti sp. nov., isolated from the Karakum Desert. Int J Syst Evol Microbiol 70:282–291

    CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Song J, Qiu SW, Zhao JW, Han CY, Ying W, Sun XJ, Jiang SW, Wang XJ, Xiang WS (2019) Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie Van Leeuwenhoek 112:765–773

    CAS  PubMed  Google Scholar 

  • Thawai C, Tanasupawat S, Itoh T, Suwanborirux K, Kudo T (2004) Micromonospora aurantionigra sp. nov., isolated from a peat swamp forest in Thailand. Actinomycetologica 18:8–14

    CAS  Google Scholar 

  • Thawai C, Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N (2016) Micromonospora soli sp. nov., isolated from rice rhizosphere soil. Antonie Van Leeuwenhoek 109:449–456

    CAS  PubMed  Google Scholar 

  • Thomas EA, Alvarez CE, Sutcliffe JG (2000) Evolutionarily distinct classes of S27 ribosomal proteins with differential mRNA expression in rat hypothalamus. J Neurochem 74:2259–2267

    CAS  PubMed  Google Scholar 

  • Veyisoglu A, Carro L, Cetin D, Igual JM, Klenk HP, Sahin N (2020) Micromonospora orduensis sp. nov., isolated from deep marine sediment. Antonie Van Leeuwenhoek 113:397–405

    CAS  PubMed  Google Scholar 

  • Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • Wang H, van der Donk WA (2012) Biosynthesis of the class III lantipeptide catenulipeptin. ACS Chem Biol 7:1529–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Yamamoto S, Hino S, Harayama S (1998) Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl Environ Microbiol 64:1203–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Teramoto M, Harayama S (1999) An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl Environ Microbiol 65:2813–2819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • Weitnauer G, Mühlenweg A, Trefzer A, Hoffmeister D, Süssmuth RD, Jung G, Welzel K, Vente A, Girreser U, Bechthold A (2001) Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tü57 and production of new antibiotics. Chem Biol 8:569–581

    CAS  PubMed  Google Scholar 

  • Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178

    CAS  Google Scholar 

  • Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169

    CAS  PubMed  Google Scholar 

  • Xiang WS, Yu C, Liu CX, Zhao JW, Yang LY, Xie BJ, Li L, Hong K, Wang XJ (2014) Micromonospora polyrhachis sp. nov., an actinomycete isolated from edible Chinese black ant (Polyrhachis vicina Roger). Int J Syst Evol Microbiol 64:495–500

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Harayama S (1996) Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Bouvet PJ, Harayama S (1999) Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. Int J Syst Bacteriol 49:87–95

    CAS  PubMed  Google Scholar 

  • Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017b) A large scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    CAS  PubMed  Google Scholar 

  • Yu C, Liu CX, Wang XJ, Zhao JW, Yang LY, Gao RX, Zhang YJ, Xiang WS (2013) Streptomyces polyrhachii sp. nov., a novel actinomycete isolated from an edible Chinese black ant (Polyrhachis vicina Roger). Antonie Van Leeuwenhoek 104:1013–1019

    PubMed  Google Scholar 

  • Zhao JW, Han LY, Yu MY, Cao P, Li DM, Guo XW, Liu YQ, Wang XJ, Xiang WS (2019) Characterization of Streptomycessporangiiformans sp. Nov., a Novel Soil Actinomycete with Antibacterial Activity against Ralstonia solanacearum. Microorganisms 7:360

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Aharon Oren for his valuable help with naming the species.

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (No. 31700067), the China Postdoctoral Science Foundation (2015M580255), the Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Z15016), and the “Academic Backbone” Project of Northeast Agricultural University (19XG18).

Author information

Authors and Affiliations

Authors

Contributions

Xiujun Sun and Shiwen Qiu performed the laboratory experiments, analysed the data, and drafted the manuscript. Xianxian Luo contributed to the biochemical characterization. Pinjiao Jin contributed to the polyphasic taxonomy. Junwei Zhao contributed to the fatty acids determination. Xianyao Wu and Jize Yang contributed to the morphological analyses. Xiangjing Wang participated to the discussions of experiments and revised the manuscript. Jia Song and Wensheng Xiang designed the experiments and revised the manuscript.

Corresponding authors

Correspondence to Jia Song or Wensheng Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Consent to participate and/or consent to publish

This research doesn’t involve in human subjects, so the informed consent to participate and consent to publish are not obtained.

Informed consent

All authors have seen a copy of the manuscript and have approved its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 308 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Qiu, S., Luo, X. et al. Micromonospora rubida sp. nov., a novel actinobacterium isolated from soil of Harbin. Antonie van Leeuwenhoek 114, 697–708 (2021). https://doi.org/10.1007/s10482-021-01550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01550-6

Keywords

Navigation