Skip to main content

Advertisement

Log in

Pseudooceanicola atlanticus gen. nov. sp. nov., isolated from surface seawater of the Atlantic Ocean and reclassification of Oceanicola batsensis, Oceanicola marinus, Oceanicola nitratireducens, Oceanicola nanhaiensis, Oceanicola antarcticus and Oceanicola flagellatus, as Pseudooceanicola batsensis comb. nov., Pseudooceanicola marinus comb. nov., Pseudooceanicola nitratireducens comb. nov., Pseudooceanicola nanhaiensis comb. nov., Pseudooceanicola antarcticus comb. nov., and Pseudooceanicola flagellatus comb. nov.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A taxonomic study was carried out on strain 22II-S11gT, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, rod shaped without flagellum, oxidase positive and weakly catalase positive. Growth was observed at NaCl concentrations of 0.5–9 % and at temperatures of 10–41 °C. The isolate was incapable of gelatin hydrolysis and unable to reduce nitrate to nitrite, degrade aesculin and Tween 80. On the basis of 16S rRNA gene sequence similarity, strain 22II-S11gT was found to be most closely related to Oceanicola batsensis HTCC2597T (97.26 %), followed by Oceanicola nitratireducens JLT1210T (96.39 %), whilst other species of genus Oceanicola shared 94.00–96.34 % sequence similarity. However, it showed low similarity to Oceanicola granulosus HTCC2516T (94.79 %), the type species of the genus Oceanicola. Phylogenetic analysis showed that strain 22II-S11gT formed a clade with six species currently classified in the genus Oceanicola, but strain O. granulosus HTCC2516T and strain O. litoreus M-M22T clustered with two other genera respectively. The ANI values between strain 22II-S11gT and two type strains (O. batsensis HTCC2597T and O. granulosus HTCC2516T) are 91.86 and 91.81 % respectively. The digital DNA–DNA hybridization estimate values between strain 22II-S11gT and two type strains (O. batsensis HTCC2597T and O. granulosus HTCC2516T) are 23.4 ± 2.4 and 20.0 ± 2.3 %, respectively. The principal fatty acids were identified as summed feature 8 (C18:1 ω7c/ω6c), C16:0, C18:1 ω7c11-methyl and C12:0 3OH. The G+C content determined from the draft genome sequence is 64.1 mol%. The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, phosphatidylcholine, a phospholipid and three lipids were identified in the polar lipids. The combined genotypic and phenotypic data also show that strain 22II-S11gT should not be assigned to the genus Oceanicola; consequently strain 22II-S11gT is concluded to represent a novel species of a novel genus in the family Rhodobacteraceae, for which the name Pseudooceanicola atlanticus gen. nov., sp. nov. is proposed (type strain 22II-S11gT = KCTC 42004T = LMG 27424T = MCCC 1A09160T). Six misclassified species should be transferred to the novel genus Pseudooceanicola as follows: O. batsensis should be transferred to the genus Pseudooceanicola as Pseudooceanicola batsensis comb. nov. (type strain HTCC2597T = ATCC BAA-863T = DSM 15984T = KCTC 12145T); Oceanicola marinus should be transferred to the genus Pseudooceanicola as Pseudooceanicola marinus comb. nov. (type strain AZO-CT = LMG 23705T = BCRC 17591T); O. nitratireducens should be transferred to the genus Pseudooceanicola as Pseudooceanicola nitratireducens comb. nov. (type strain JLT1210T = LMG 24663T = CGMCC 1.7292T); Oceanicola nanhaiensis should be transferred to the genus Pseudooceanicola as Pseudooceanicola nanhaiensis comb. nov. (type strain SS011B1-20T = LMG 23508T = CGMCC 1.6293T); Oceanicola antarcticus should be transferred to the genus Pseudooceanicola as Pseudooceanicola antarcticus comb. nov. (type strain Ar-45T = CGMCC 1.12662T = LMG 27868T); and Oceanicola flagellatus should be transferred to the genus Pseudooceanicola as Pseudooceanicola flagellatus comb. nov. (type strain DY470T = CGMCC 1.12664T = LMG 27871T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MCCC:

Marine Culture Collection of China

DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

LMG:

BCCM/LMG bacteria collection

References

  • Auch AF, Klenk HP, Goker M (2010a) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148

    Article  PubMed Central  PubMed  Google Scholar 

  • Auch AF, von Jan M, Klenk HP, Goker M (2010b) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134

    Article  PubMed Central  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J, Smith JA, Struhl K (2002) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Cho JC, Giovannoni SJ (2004) Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-beta-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. Int J Syst Evol Microbiol 54:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Cai M (2001) Determinative manual for routine bacteriology. Scientific Press (English translation), Beijing

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Guo B, Wang YN, Yu SL, Inamori R, Qu R, Ye YG, Wu XL (2007) Oceanicola nanhaiensis sp. nov., isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 57:157–160

    Article  CAS  PubMed  Google Scholar 

  • Huo Y-Y, Li Z-Y, You H, Wang C-S, Post AF, Oren A, Xu X-W (2014) Oceanicola antarcticus sp. nov. and Oceanicola flagellatus sp. nov., moderately halophilic bacteria isolated from seawater. Int J Syst Evol Microbiol ijs. 0.062588-062580

  • Huo YY, Li ZY, You H, Wang CS, Post AF, Oren A, Xu XW (2014b) Oceanicola antarcticus sp. nov. and Oceanicola flagellatus sp. nov., moderately halophilic bacteria isolated from seawater. Int J Syst Evol Microbiol 64:2975–2979

    Article  CAS  PubMed  Google Scholar 

  • Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Lin KY, Sheu SY, Chang PS, Cho JC, Chen WM (2007) Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 57:1625–1629

    Article  PubMed  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Park S, Lee MH, Yoon JH (2013) Oceanicola litoreus sp. nov., an alphaproteobacterium isolated from the seashore sediment. Antonie Van Leeuwenhoek 103:859–866

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rzhetsky A, Nei M (1992) Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35:367–375

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. NY Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids

  • Shieh WY, Chen Y-W, Chaw S-M, Chiu H-H (2003) Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53:479–484

    Article  PubMed  Google Scholar 

  • Skerman V (1967). A guide to the identification of the genera of bacteria: with methods and digests of generic characteristics

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thrash JC, Cho J-C, Vergin KL, Giovannoni SJ (2010) Genome sequences of Oceanicola granulosus HTCC2516T and Oceanicola batsensis HTCC2597T. J Bacteriol 192:3549–3550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wayne L, Brenner D, Colwell R, Grimont P, Kandler O, Krichevsky M, Moore L, Moore W, Murray R, Stackebrandt E (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Zheng Q, Chen C, Wang YN, Jiao N (2010) Oceanicola nitratireducens sp. nov., a marine alphaproteobacterium isolated from the South China Sea. Int J Syst Evol Microbiol 60:1655–1659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by COMRA program (No. DY125-15-R-01), Public Welfare Project of SOA (201005032) and National Infrastructure of Microbial Resources of China (Nos. NIMR-2014-9, NIMR-2015-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongze Shao.

Additional information

Qiliang Lai and Guizhen Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Q., Li, G., Liu, X. et al. Pseudooceanicola atlanticus gen. nov. sp. nov., isolated from surface seawater of the Atlantic Ocean and reclassification of Oceanicola batsensis, Oceanicola marinus, Oceanicola nitratireducens, Oceanicola nanhaiensis, Oceanicola antarcticus and Oceanicola flagellatus, as Pseudooceanicola batsensis comb. nov., Pseudooceanicola marinus comb. nov., Pseudooceanicola nitratireducens comb. nov., Pseudooceanicola nanhaiensis comb. nov., Pseudooceanicola antarcticus comb. nov., and Pseudooceanicola flagellatus comb. nov.. Antonie van Leeuwenhoek 107, 1065–1074 (2015). https://doi.org/10.1007/s10482-015-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0398-2

Keywords

Navigation