Skip to main content
Log in

Healthcare inventory management in the presence of supply disruptions and a reliable secondary supplier

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study the inventory review policy for a healthcare facility to minimize the impact of inevitable drug shortages. Usually, healthcare facilities do not rely on a single source of supply, and alternative mechanisms are present. When the primary supplier is not available, items are produced in-house or supplied through another supplier, albeit with additional cost. Our aim in this study is to determine how optimal inventory parameters are adjusted depending on the availability of the primary supplier. We show that an approximation provides trivial results, yet fails to capture the nuances therein. Our proposed Markov chain model overcomes these issues, and numerical results illustrate the significant economic impact of inventory parameter optimization. Furthermore, we simulate uncertainty scenarios and provide sensitivity analyses concerning fixed ordering cost for the secondary supplier, shortage frequency, shortage duration, and demand rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulsalam, Y., & Schneller, E. (2019). Hospital supply expenses: An important ingredient in health services research. Medical Care Research and Review, 76(2), 240–252.

    Article  Google Scholar 

  • Abu Zwaida, T., Pham, C., & Beauregard, Y. (2021). Optimization of inventory management to prevent drug shortages in the hospital supply chain. Applied Sciences, 11(6), 2726.

    Article  Google Scholar 

  • Arreola-Risa, A., & DeCroix, G. A. (1998). Inventory management under random supply disruptions and partial backorders. Naval Research Logistics, 45(7), 687–703.

    Article  Google Scholar 

  • Azghandi, R., Griffin, J., & Jalali, M. S. (2018). Minimization of drug shortages in pharmaceutical supply chains: A simulation-based analysis of drug recall patterns and inventory policies. Complexity, 2018, 1–14.

    Article  Google Scholar 

  • Azizi, S., Bozkir, C. D., Caglar, T., Andrew, C., Kundakcioglu, O. E., & Kurbanzade, A. K. (2021). Aid allocation for camp-based and urban refugees with uncertain demand and replenishments. Production and Operations Management, 30, 4455–4474.

    Article  Google Scholar 

  • Balcik, B., Bozkir, C. D. C., & Kundakcioglu, O. E. (2016). A literature review on inventory management in humanitarian supply chains. Surveys in Operations Research and Management Science, 21(2), 101–116.

    Article  Google Scholar 

  • Beamon, B. M., & Kotleba, S. A. (2006). Inventory management support systems for emergency humanitarian relief operations in south Sudan. The International Journal of Logistics Management, 17(2), 187–212.

    Article  Google Scholar 

  • Bialas, C., Revanoglou, A., & Manthou, V. (2020). Improving hospital pharmacy inventory management using data segmentation. American Journal of Health-System Pharmacy, 77(5), 371–377.

    Article  Google Scholar 

  • Bozkir, C. D. C., Kundakcioglu, O. E., & Henry, A. C. (2022). Hospital service levels during drug shortages: Stocking and transshipment policies for pharmaceutical inventory. Journal of Global Optimization, 83, 565–584.

    Article  Google Scholar 

  • Dixit, A., Routroy, S., & Dubey, S. K. (2019). A systematic literature review of healthcare supply chain and implications of future research. International Journal of Pharmaceutical and Healthcare Marketing, 13, 405–435.

    Article  Google Scholar 

  • Gebicki, M., Mooney, E., Chen, S. J., & Mazur, L. M. (2014). Evaluation of hospital medication inventory policies. Health Care Management Science, 17(3), 215–229.

    Article  Google Scholar 

  • Gu, A., Wertheimer, A. I., Brown, B., & Shaya, F. T. (2011). Drug shortages in the us–causes, impact, and strategies.

  • Headquarters, A., & Trusts, P. C. (2018). Drug shortages roundtable: Minimizing the impact on patient care. American Journal of Health-System Pharmacies, 75(11), 816–820.

    Article  Google Scholar 

  • Landry, S., & Philippe, R. (2004). How logistics can service healthcare. In Supply Chain Forum: An International Journal, 5, 24–30.

    Article  Google Scholar 

  • Lin, C., Tan, B., & Lee, W.-C. (2000). An EOQ model for deteriorating items with time-varying demand and shortages. International Journal of Systems Science, 31(3), 391–400.

    Article  Google Scholar 

  • Nicholson, L., Vakharia, A. J., & Erenguc, S. S. (2004). Outsourcing inventory management decisions in healthcare: Models and application. European Journal of Operational Research, 154(1), 271–290.

    Article  Google Scholar 

  • Paul, S., & Venkateswaran, J. (2018). Inventory management strategies for mitigating unfolding epidemics. IISE Transactions on Healthcare Systems Engineering, 8(3), 167–180.

    Article  Google Scholar 

  • Premier Inc. (2022). Premier annual report on progress in eliminating drug shortages. URL https://explore.premierinc.com/providegx-dev

  • Priyan, S., & Uthayakumar, R. (2014). Optimal inventory management strategies for pharmaceutical company and hospital supply chain in a fuzzy-stochastic environment. Operations Research for Health Care, 3(4), 177–190.

    Article  Google Scholar 

  • Roni, M. S., Eksioglu, S. D., Jin, M., & Mamun, S. (2016). A hybrid inventory policy with split delivery under regular and surge demand. International Journal of Production Economics, 172, 126–136.

    Article  Google Scholar 

  • Roni, M. S., Jin, M., & Eksioglu, S. D. (2015). A hybrid inventory management system responding to regular demand and surge demand. Omega, 52, 190–200.

    Article  Google Scholar 

  • Saedi, S., Kundakcioglu, O. E., & Henry, A. C. (2016). Mitigating the impact of drug shortages for a healthcare facility: An inventory management approach. European Journal of Operational Research, 251(1), 107–123.

    Article  Google Scholar 

  • Saha, E., & Ray, P. K. (2019). Modelling and analysis of inventory management systems in healthcare: A review and reflections. Computers and Industrial Engineering, 137, 106051. https://doi.org/10.1016/j.cie.2019.106051

    Article  Google Scholar 

  • Sawik, T. (2014). Optimization of cost and service level in the presence of supply chain disruption risks: Single vs. multiple sourcing. Computers and Operations Research, 51, 11–20.

    Article  Google Scholar 

  • Solnick, R., Schlicher, H.N., Haddock, A. (2019). EMRA emergency medicine advocacy handbook, 5th edn. Emergency Medicine Residents’ Association. ISBN 978-1-929854-53-0.

  • Tichy, E. M., Schumock, G. T., Hoffman, J. M., Suda, K. J., Rim, M. H., Tadrous, M., Stubbings, J., Cuellar, S., Clark, J. S., Wiest, M. D., Matusiak, L. M., Hunkler, R. J., & Vermeulen, L. C. (2020). National trends in prescription drug expenditures and projections for 2020. American Journal of Health-System Pharmacy, 77(15), 1213–1230.

    Article  Google Scholar 

  • Urahn, S. K., Coukell, A., Jungman, E., Snyder, E., Bournas, J. E., & Kourti, T., et al. (2017). Drug shortages: a report from the pew charitable trusts and the international society for pharmaceutical engineering Jan.

  • US Food and Drug Administration. (2019). Drug shortages: root causes and potential solutions. In A report by the drug shortages task force. Available online at:https://www.fda.gov/media/131130/download

  • US Food and Drug Administration. (2020). Current and resolved drug shortages and discontinuations reported to FDA. URL http://www.accessdata.fda.gov/scripts/drugshortages/default.cfm. Retrieved 29 September 2023; 18:48:07.

  • US Government Accountability Office. (2016). Drug shortages-certain factors are strongly associated with this persistent public health challenge.

  • US Food and Drug Administration. (2022). Report to congress on drug shortages for calendar year 2021.

  • Uthayakumar, R., & Priyan, S. (2013). Pharmaceutical supply chain and inventory management strategies: Optimization for a pharmaceutical company and a hospital. Operations Research for Health Care, 2(3), 52–64.

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the support of The Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant 115M564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Erhun Kundakcioglu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Limiting probabilities and expected inventory levels for rare shortages with fast recovery, \(\mu <\alpha \)

1.1 Case 1: \(Q_2 < R_1\)

In order to obtain the limiting probabilities of the states, we divide the Markov chain states into four parts. The first part includes all the available states (all the states on the left side of the transition diagram). The second part consists of all the states from \((Q_1+R_1,U)\) to \((R_1+1,U)\); the third includes states \((R_1,U)\) to \((Q_2+1,U)\), and the remaining states are in the fourth part. Next, we obtain the limiting probabilities of these parts separately.

All the states of the first part can be written as a function of the limiting probability of the \((Q_1+R_1,A)\) state:

$$\begin{aligned} P_{Q_1+R_1-j,A}= \left( \frac{\lambda }{\lambda +\mu }\right) ^{j}P_{Q_1+R_1,A},\qquad {j=0,\ldots ,Q_1-1}. \end{aligned}$$
(7)

The sum of the probabilities of these states is

$$\begin{aligned} \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,A}=\left( \frac{\lambda +\mu }{\mu }\right) \left[ 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(8)

Now, let us try to obtain the limiting probabilities of the second part, that is, the states between \((Q_1+R_1,U)\) and \((R_1+1,U)\). Similarly, we can write the limiting probabilities of all the states in this part as a function of the limiting probabilities of \((Q_1+R_1,U)\) and \((Q_1+R_1,A)\) states. We have the following equation for the \((Q_1+R_1,U)\) state:

$$\begin{aligned} P_{Q_1+R_1,U}= \left( \frac{\mu }{ \lambda +\alpha }\right) P_{Q_1+R_1,A}. \end{aligned}$$
(9)

For the second state of this part, we have the following:

$$\begin{aligned} P_{Q_1+R_1-1,U}= \left( \frac{\mu }{ \lambda +\alpha }\right) P_{Q_1+R_1-1,A}+\left( \frac{\lambda }{ \lambda +\alpha }\right) P_{Q_1+R_1,U}. \end{aligned}$$

Using Eqs. (7) and (9), we substitute \(P_{Q_1+R_1-1,A}\) and \(P_{Q_1+R_1,U}\) respectively:

$$\begin{aligned} P_{Q_1+R_1-1,U}= \left( \left( \frac{\mu }{ \lambda +\alpha }\right) \left( \frac{\lambda }{\lambda +\mu }\right) +\left( \frac{\lambda }{ \lambda +\alpha }\right) \left( \frac{\mu }{ \lambda +\alpha }\right) \right) P_{Q_1+R_1,A}. \end{aligned}$$

The generalized form is as follows:

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu \lambda ^j}{\lambda +\alpha }\left[ \sum _{k=0}^{j}\frac{1}{(\lambda +\alpha )^k(\lambda +\mu )^{j-k}} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(10)

Let us try to find the sum of series in the last equation. We have

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \sum _{k=0}^{j}\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{k} P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \frac{1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1} }{\frac{\alpha -\mu }{\lambda +\alpha } }P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1} \right) P_{Q_1+R_1,A}, \qquad {j=0,\ldots ,Q_1-1}. \end{aligned}$$
(11)

We can obtain the following equation for \((R_1+1,U)\) state:

$$\begin{aligned} P_{R_1+1,U}&= \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu (\lambda +\mu )}{\lambda (\alpha -\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1,A}. \end{aligned}$$
(12)

The sum of the probabilities of the states in this part is

$$\begin{aligned} \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,U}&=\frac{\mu }{\alpha -\mu }\sum _{j=0}^{Q_1-1} \left( \frac{\lambda }{\lambda +\mu } \right) ^{j}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1} \right) P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu }{\alpha -\mu }\left[ \frac{1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}}{1 -\frac{\lambda }{\lambda +\mu }} -\frac{\lambda +\mu }{\lambda +\alpha }\frac{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} }{1-\frac{\lambda }{\lambda +\alpha } } \right] P_{Q_1+R_1,A} \nonumber \\&=\left[ \frac{\lambda +\mu }{\alpha -\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) -\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \right] P_{Q_1+R_1,A} \end{aligned}$$
(13)

For the third part, we obtain the limiting probabilities in a similar way with what we have done in the first part. All the limiting probabilities of these states can be written as a function of the limiting probability of \((R_1+1,U)\) state:

$$\begin{aligned} P_{R_1-j,U} =\left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}P_{R_1+1,U}, \qquad {j=0,\ldots ,R_1-Q_2-1}. \end{aligned}$$
(14)

The sum of the probabilities of third part is

$$\begin{aligned} \sum _{j=0}^{R_1-Q_2-1} P_{R_1-j,U}&=\frac{\lambda }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] P_{R_1+1,U}. \end{aligned}$$
(15)

Now, let us try to obtain the limiting probabilities of the last part. The structure is similar to previous part, and the only thing we have to consider is to write the probabilities of these states in terms of the probability of \((Q_2,U)\) state. We, then, would have the following:

$$\begin{aligned} P_{Q_2-j,U} = \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U}, \qquad {j=0,\ldots ,Q_2-1}. \end{aligned}$$
(16)

We can write the following equation for the limiting probability of \((Q_2,U)\) state:

$$\begin{aligned} \left( \lambda +\alpha \right) P_{Q_2,U} =\lambda \left[ P_{1,U} +P_{Q_2+1,U} \right] . \end{aligned}$$
(17)

Using Eqs. (14) and (16), we substitute for \(P_{Q_2+1,U}\) and \(P_{1,U} \), respectively, in the last equation:

$$\begin{aligned} \left( \lambda +\alpha \right) P_{Q_2,U}&=\lambda \left[ \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-1} P_{Q_2,U} +\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2}P_{R_1+1,U} \right] \nonumber \\ P_{Q_2,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} P_{Q_2,U} +\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1} P_{R_1+1,U} \nonumber \\ P_{Q_2,U}&= \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}P_{R_1+1,U}. \end{aligned}$$
(18)

Then, we have the following equation to obtain the limiting probabilities of the last part:

$$\begin{aligned} P_{Q_2-j,U} = \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1+j}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}P_{R_1+1,U}, \qquad {j=0,\ldots ,Q_2-1}. \end{aligned}$$
(19)

The sum of the probabilities of these states is

$$\begin{aligned} \sum _{j=0}^{Q_2-1}P_{Q_2-j,U}&= \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}. \frac{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) } P_{R_1+1,U} \nonumber \\&=\frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1} }{\frac{\alpha }{\lambda +\alpha } }P_{R_1+1,U} \nonumber \\&=\frac{\lambda }{\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} P_{R_1+1,U} \end{aligned}$$
(20)

Considering the fact that the limiting probabilities of all of the states must add up to 1, we obtain the limiting probability of \((Q_1+R_1,A)\) state for case 1 as follows:

$$\begin{aligned}&\left[ \frac{\lambda +\mu }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) + \frac{\lambda +\mu }{\alpha -\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) \right. \nonumber \\&\quad \left. -\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +\frac{\lambda }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] P_{R_1+1,U} +\frac{\lambda }{\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} P_{R_1+1,U} =1 \nonumber \\&\quad 1=\left[ \frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) -\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \right] \nonumber \\&\quad P_{Q_1+R_1,A} +\frac{\lambda }{\alpha }P_{R_1+1,U} \nonumber \\&\quad 1=\Bigg [\frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) -\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \nonumber \\&\quad +\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} -\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \Bigg ] P_{Q_1+R_1,A} \nonumber \\&\quad 1=\frac{(\lambda +\mu )(\alpha +\mu )}{\alpha \mu }\Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )P_{Q_1+R_1,A} \nonumber \\&\quad P_{Q_1+R_1,A}=\frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1}. \end{aligned}$$
(21)

Plugging (21) in (12) we obtain \(P_{1,U}\) to be used in the expected total cost function in (6) as follows:

$$\begin{aligned} P_{1,U}= & {} \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\frac{\mu (\lambda +\mu )}{\lambda (\alpha -\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1} \right) \nonumber \\{} & {} \times \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1}. \end{aligned}$$
(22)

Expected inventory level of this case can be computed as follows:

$$\begin{aligned} I(Q_1;Q_2;R_1)&= \sum _{j=0}^{Q_1-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,A} + \sum _{j=0}^{Q_1-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,U} \nonumber \\&\quad + \sum _{j=0}^{R_1-Q_2-1} \left( R_1-j\right) P_{R_1-j,U} + \sum _{j=0}^{Q_2-1}(Q_2-j) P_{Q_2-j,U}, \end{aligned}$$
(23)

which can be rewritten as

$$\begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1) \left( \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,A} +\sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,U} \right) \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,A} -\sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,U} + R_1 \sum _{j=0}^{R_1-Q_2-1} P_{R_1-j,U} \nonumber \\&\quad -\sum _{j=0}^{R_1-Q_2-1}j P_{R_1-j,U} + Q_2 \sum _{j=0}^{Q_2-1} P_{Q_2-j,U} -\sum _{j=0}^{Q_2-1}j P_{Q_2-j,U}. \end{aligned}$$
(24)

Knowing that the sum of the limiting probabilities of the all the states is 1, we rewrite the last equation as

$$\begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1)-Q_1\sum _{j=0}^{R_1-Q_2-1} P_{R_1-j,U} -(Q_1+R_1-Q_2)\sum _{j=0}^{Q_2-1} P_{Q_2-j,U} \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,A} -\sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,U}\nonumber \\&\quad -\sum _{j=0}^{R_1-Q_2-1}j P_{R_1-j,U} -\sum _{j=0}^{Q_2-1}j P_{Q_2-j,U}. \end{aligned}$$
(25)

We replace the sum of probabilities from Eqs. (15) and (20), and \(P_{Q_1+R_1-j,A} \), \(P_{Q_1+R_1-j,U} \), \(P_{R_1-j,U} \), and \(P_{Q_2-j,U} \) from Eqs. (8), (13), (15), and (20):

$$\begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1)\nonumber \\&\quad -\left[ Q_1\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right) +(Q_1+R_1-Q_2)\frac{\lambda }{\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] P_{R_1+1,U} \nonumber \\&\quad -\left[ \sum _{j=0}^{Q_1-1} j \left( \frac{\lambda }{\lambda +\mu }\right) ^{j}+\sum _{j=0}^{Q_1-1} j \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad -\left[ \sum _{j=0}^{R_1-Q_2-1}j \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}+\sum _{j=0}^{Q_2-1}j \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1+j}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\right] P_{R_1+1,U}. \end{aligned}$$
(26)

Knowing that

$$\begin{aligned} \sum _{i=0}^{n}i p^i&=p\sum _{i=0}^{n}i p^{i-1}=p\sum _{i=0}^{n}\frac{\partial }{\partial p}p^i=p \frac{\partial }{\partial p}\sum _{i=0}^{n}p^i \nonumber \\&=\frac{np^{n+2}-(n+1)p^{n+1}+p}{(1-p)^2}, \end{aligned}$$
(27)

we can rewrite the last equation as

$$\begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1)-\frac{\lambda }{\alpha } \left[ Q_1+(R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] P_{R_1+1,U} \nonumber \\&\quad -\Bigg [\left( \frac{\alpha }{\alpha -\mu }\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right) \nonumber \\&\quad -\left( \frac{\mu (\lambda +\mu )}{(\alpha -\mu )(\lambda +\alpha )}\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \Bigg ]P_{Q_1+R_1,A} \nonumber \\&\quad -\Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) \left( \frac{(R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1-Q_2+1}-(R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1-Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \nonumber \\&\quad +\left( \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\right) \left( \frac{(Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2+1}-Q_2\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \Bigg ]P_{R_1+1,U}. \end{aligned}$$
(28)

We can plug in limiting probabilities and obtain the final equation to be used in (6):

$$\begin{aligned} \begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1)-\frac{\lambda }{\alpha } \left[ Q_1+(R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] \\&\quad \frac{\mu (\lambda +\mu )}{\lambda (\alpha -\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1} \right) \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )}\Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1} \\&\quad -\left[ \left( \frac{\alpha }{\alpha -\mu }\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right) \right. \\&\quad \left. -\left( \frac{\mu (\lambda +\mu )}{(\alpha -\mu )(\lambda +\alpha )}\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \right] \\&\quad \times \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1}\\&\quad -\left[ \left( \frac{\lambda }{\lambda +\alpha }\right) \left( \frac{(R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1-Q_2+1}-(R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1-Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \right. \\&\quad \left. +\left( \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\right) \left( \frac{(Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2+1}-Q_2\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \right] \\&\quad \times \frac{\mu (\lambda +\mu )}{\lambda (\alpha -\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1} \right) \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1}. \end{aligned} \end{aligned}$$
(29)

1.2 Case 2: \(R_1\le Q_2 \le Q_1+R_1\)

Similar to Case 1, we divide the Markov chain states into four parts. The first part includes all the available states, similar to Case 1. However, the second part consists of all the states from \((Q_1+R_1,U)\) to \((Q_2+1,U)\); the third includes states \((Q_2,U)\) to \((R_1+1,U)\), and the remaining states are in the fourth part, states between \((R_1,U)\) and (1, U). Next, we would obtain the limiting probabilities of these parts separately.

We can obtain the limiting probabilities of the first part from those of case 1:

$$\begin{aligned} P_{Q_1+R_1-j,A} = \left( \frac{\lambda }{\lambda +\mu }\right) ^{j}P_{Q_1+R_1,A}, \qquad {j=0,\ldots ,Q_1-1}. \end{aligned}$$
(30)

The sum of the probabilities of these states is

$$\begin{aligned} \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,A}&=\frac{\lambda +\mu }{\mu }\left[ 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(31)

The equations for the second part are similar to part two of case 1, but the range of the states, j, has to be updated. We have the following equation for the \((Q_1+R_1,U)\) state:

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\left( \frac{\mu }{\alpha -\mu }\right) \left( \frac{\lambda }{\lambda +\mu } \right) ^{j}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1} \right) P_{Q_1+R_1,A}, \nonumber \\&\qquad {j=0,\ldots ,Q_1+R_1-Q_2-1}. \end{aligned}$$
(32)

The sum of the states in this part, for case 2, is

$$\begin{aligned}&\sum _{j=0}^{Q_1+R_1-Q_2-1}P_{Q_1+R_1-j,U} \nonumber \\&\quad =\frac{\lambda +\mu }{\alpha -\mu } \left[ 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} -\frac{\mu }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) \right] P_{Q_1+R_1,A}. \end{aligned}$$
(33)

For the third part, we have the following equation for \((Q_2,U)\) state:

$$\begin{aligned} P_{Q_2,U}=\frac{\lambda }{\lambda +\alpha }\left( P_{Q_2+1,U}+P_{1,U}\right) +\frac{\mu }{\lambda +\alpha }P_{Q_2,A}. \end{aligned}$$
(34)

For the remaining states of this part, we obtain the limiting probabilities as a function of \(P_{Q_2,U}\) and \(P_{Q_1+R_1,A}\):

$$\begin{aligned} P_{Q_2-j,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} + \frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}\nonumber \\&\quad \sum _{k=0}^{j-1}\left( \frac{\lambda }{\lambda +\mu }\right) ^{j-k}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{k} P_{Q_1+R_1,A} \nonumber \\ P_{Q_2-j,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} + \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2+j}\nonumber \\&\quad \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j} \right) P_{Q_1+R_1,A}, \nonumber \\&\quad {j=1,\ldots ,Q_2-R_1-1}. \end{aligned}$$
(35)

Note that the range is starting from one, not zero. \(P_{R_1+1,U}\) is

$$\begin{aligned} P_{R_1+1,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1}P_{Q_2,U}\nonumber \\&\quad + \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) P_{Q_1+R_1,A}. \end{aligned}$$
(36)

The sum of the probabilities of third part is

$$\begin{aligned} \sum _{j=0}^{Q_2-R_1-1} P_{Q_2-j,U}&=\sum _{j=0}^{Q_2-R_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} \nonumber \\&\quad +\sum _{j=1}^{Q_2-R_1-1} \frac{\mu }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2+j}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j} \right) P_{Q_1+R_1,A} \nonumber \\&=\frac{\lambda +\alpha }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U}\nonumber \\&\quad +\frac{\lambda }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg [1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg ]P_{Q_1+R_1,A} \nonumber \\&\quad -\frac{\lambda \mu }{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg [1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg ]P_{Q_1+R_1,A}. \end{aligned}$$
(37)

Now, let us try to obtain the limiting probabilities of the last part. As mentioned above, this part would be considered only when the reorder point is greater than zero. The structure is similar to part one, and the only thing we have to consider is to write the probabilities of these states in terms of the probability of \((R_1+1,U)\) state. We, then, have the following:

$$\begin{aligned} P_{R_1-j,U} = \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}P_{R_1+1,U}, \qquad {j=0,\ldots ,R_1-1}. \end{aligned}$$
(38)

The sum of the probabilities of these states is

$$\begin{aligned} \sum _{j=0}^{R_1-1}P_{R_1-j,U}=\frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U}. \end{aligned}$$
(39)

In order to obtain the closed form equation for the limiting probability of \((Q_2,U)\) state, we have the following equations:

$$\begin{aligned} P_{1,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}P_{R_1+1,U} \nonumber \\&=\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-1}P_{Q_2,U} + \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\nonumber \\&\quad \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) P_{Q_1+R_1,A}, \end{aligned}$$
(40)
$$\begin{aligned} P_{Q_2+1,U}&=\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) P_{Q_1+R_1,A}, \end{aligned}$$
(41)
$$\begin{aligned} P_{Q_2,A}&= \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}P_{Q_1+R_1,A}. \end{aligned}$$
(42)

Then from Eq. (34),

$$\begin{aligned} P_{Q_2,U}&= \frac{\mu }{\alpha -\mu } \left[ \frac{\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1+1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right. \nonumber \\&\quad \left. +\frac{\frac{\lambda }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) + \frac{\alpha -\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(43)

Considering the fact that the sum of the limiting probabilities of all of the states must add up to 1, we obtain the limiting probability of \((Q_1+R_1,A)\) state for case 2 as follows:

$$\begin{aligned} 1&=\Bigg [\frac{\lambda +\mu }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) +\frac{\lambda +\mu }{\alpha -\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}\right. \nonumber \\&\quad \left. -\frac{\mu }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) \right) \Bigg ] P_{Q_1+R_1,A} \nonumber \\&\quad +\frac{\lambda +\alpha }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U}\nonumber \\&\quad +\frac{\lambda }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg [1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg ]P_{Q_1+R_1,A} \nonumber \\&\quad -\frac{\lambda \mu }{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg [1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg ]P_{Q_1+R_1,A}\nonumber \\&\quad + \frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U}. \end{aligned}$$
(44)

Then,

$$\begin{aligned} P_{Q_1+R_1,A}&=\Bigg [\frac{\alpha +\mu }{\alpha \mu } -\frac{(\alpha +\mu )(\lambda +\mu )}{\mu \alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\Bigg ]^{-1} \nonumber \\&=\frac{\alpha \mu }{(\alpha +\mu )(\lambda +\mu )}\left( \frac{1}{\lambda +\mu } -\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) ^{-1}. \end{aligned}$$
(45)

Expected inventory level can be computed as follows:

$$\begin{aligned} I(Q_1;Q_2;R_1)&= \sum _{j=0}^{Q_1-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,A} \nonumber \\&\quad + \sum _{j=0}^{Q_1+R_1-Q_2-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,U} \nonumber \\&\quad + \sum _{j=0}^{Q_2-R_1-1} \left( Q_2-j\right) P_{Q_2-j,U} + \sum _{j=0}^{R_1-1}(R_1-j) P_{R_1-j,U}, \end{aligned}$$
(46)

which can be rewritten as

$$\begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1)\left( \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,A} +\sum _{j=0}^{Q_1+R_1-Q_2-1} P_{Q_1+R_1-j,U} \right) \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,A} \nonumber \\&\quad -\sum _{j=0}^{Q_1+R_1-Q_2-1} j P_{Q_1+R_1-j,U} + Q_2 \sum _{j=0}^{Q_2-R_1-1} P_{Q_2-j,U} \nonumber \\&\quad -\sum _{j=0}^{Q_2-R_1-1}j P_{Q_2-j,U} + R_1 \sum _{j=0}^{R_1-1} P_{R_1-j,U} -\sum _{j=0}^{R_1-1}j P_{R_1-j,U} \end{aligned}$$
(47)
$$\begin{aligned}&=(Q_1+R_1) -Q_1 \frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U}\nonumber \\&\quad - (Q_1+R_1-Q_2)\Bigg [\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right) P_{Q_2,U} \nonumber \\&\quad +\frac{\lambda }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg )P_{Q_1+R_1,A} \nonumber \\&\quad -\frac{\lambda \mu }{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg )P_{Q_1+R_1,A} \Bigg ] \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,A}-\sum _{j=0}^{Q_1+R_1-Q_2-1} j P_{Q_1+R_1-j,U} \nonumber \\&\quad -\sum _{j=0}^{Q_2-R_1-1}j P_{Q_2-j,U} -\sum _{j=0}^{R_1-1}j P_{R_1-j,U}. \end{aligned}$$
(48)

We replace the probabilities from Eqs. (15) and (20), and \(P_{Q_1+R_1-j,A} \), \(P_{Q_1+R_1-j,U} \), \(P_{R_1-j,U} \), and \(P_{Q_2-j,U} \) from Eqs. (31), (33), (37), and (39):

$$\begin{aligned} I(Q_1;Q_2;R_1)&=-Q_1 \frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U}\nonumber \\&\quad - (Q_1+R_1-Q_2)\Bigg [\frac{\lambda +\alpha }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right) P_{Q_2,U} \nonumber \\&\quad +\frac{\lambda }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg )P_{Q_1+R_1,A} \nonumber \\&\quad -\frac{\lambda \mu }{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg )P_{Q_1+R_1,A} \Bigg ] \nonumber \\&\quad +(Q_1+R_1)-\sum _{j=0}^{Q_1-1}j \left( \frac{\lambda }{\lambda +\mu }\right) ^{j}P_{Q_1+R_1,A}\nonumber \\&\quad -\sum _{j=0}^{Q_1+R_1-Q_2-1} j \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1} \right) P_{Q_1+R_1,A} \nonumber \\&\quad -\sum _{j=0}^{Q_2-R_1-1}j \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} -\sum _{j=0}^{Q_2-R_1-1}j \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2+j}\nonumber \\&\quad \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j} \right) P_{Q_1+R_1,A} -\sum _{j=0}^{R_1-1}j \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}P_{R_1+1,U} \end{aligned}$$
(49)
$$\begin{aligned}&I(Q_1;Q_2;R_1)\nonumber \\&\quad =-Q_1 \frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U}\nonumber \\&\qquad - (Q_1+R_1-Q_2)\Bigg [\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right) P_{Q_2,U} \nonumber \\&\qquad + \frac{\lambda }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg )P_{Q_1+R_1,A} \nonumber \\&\qquad -\frac{\lambda \mu }{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg )P_{Q_1+R_1,A} \Bigg ] \nonumber \\&\qquad +(Q_1+R_1) -\Bigg [ \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1 \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \nonumber \\&\qquad -\left( \frac{\mu (\lambda +\mu )}{(\alpha -\mu )(\lambda +\alpha )}\right) \frac{(Q_1+R_1-Q_2-1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \nonumber \\&\qquad +\left( \frac{\mu }{\alpha -\mu }\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} +\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \Bigg ]P_{Q_1+R_1,A} \nonumber \\&\qquad -\frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}P_{Q_2,U} \nonumber \\&\qquad - \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \frac{(Q_2-R_1-1) \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1} +\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}P_{Q_1+R_1,A} \nonumber \\&\qquad +\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}\frac{(Q_2-R_1-1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}P_{Q_1+R_1,A} \nonumber \\&\qquad -\left( \frac{\lambda }{\lambda +\alpha }\right) \frac{(R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1} -R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}P_{R_1+1,U}. \end{aligned}$$
(50)

For this case, \(I(Q_1;Q_2;R_1)\) and \(P_{1,U}\) that is used when calculating \(SF(Q_1;Q_2;R_1)\) can be written in terms of \(\alpha \), \(\lambda \), \(\mu \), \(Q_1\), \(Q_2\), and \(R_1\) as follows:

$$\begin{aligned} I(Q_1;Q_2;R_1)= & {} (Q_1+R_1) + \frac{\alpha \mu }{(\alpha +\mu )(\lambda +\mu )}\left( \frac{1}{\lambda +\mu }-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) ^{-1}\\{} & {} \left[ -Q_1 \frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) \Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1}\frac{\mu }{\alpha -\mu }\right. \\{} & {} \times \left[ \frac{\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1+1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\right. \\{} & {} \left. +\frac{\frac{\lambda }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) +\frac{\alpha -\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right] + \frac{\mu }{\alpha -\mu } \\{} & {} \left. \times \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) \right] \\{} & {} -(Q_1+R_1-Q_2)\left[ \frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right) \frac{\mu }{\alpha -\mu } \right. \\{} & {} \left[ \frac{\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1+1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right. \\{} & {} \left. +\frac{\frac{\lambda }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) +\frac{\alpha -\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right] \\{} & {} +\frac{\lambda }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg )\\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad \left. -\frac{\lambda \mu }{\alpha (\alpha -\mu )} \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg ) \right] \\{} & {} \quad -\left[ \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1 \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \right. \\{} & {} \quad -\left( \frac{\mu (\lambda +\mu )}{(\alpha -\mu )(\lambda +\alpha )}\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \\{} & {} \quad \left. +\left( \frac{\mu }{\alpha -\mu }\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \right] \\{} & {} -\frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} \frac{\mu }{\alpha -\mu } \left[ \frac{\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1+1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right. \\{} & {} \left. +\frac{\frac{\lambda }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) +\frac{\alpha -\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right] \\{} & {} - \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\\{} & {} +\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}\frac{(Q_2-R_1-1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} -\left( \frac{\lambda }{\lambda +\alpha }\right) \frac{(R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \left[ \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1}\right. \\{} & {} \frac{\mu }{\alpha -\mu } \left[ \frac{\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1+1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right. \\{} & {} \left. +\frac{\frac{\lambda }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) +\frac{\alpha -\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right] \\{} & {} \left. \left. +\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) \right] \right] ,\\{} & {} P_{1,U}=\frac{\alpha \mu }{(\alpha +\mu )(\lambda +\mu )}\left( \frac{1}{\lambda +\mu }-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) ^{-1}\Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-1}\\{} & {} \frac{\mu }{\alpha -\mu } \left[ \frac{\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1+1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right. \\{} & {} \left. +\frac{\frac{\lambda }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) + \frac{\alpha -\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \right] \\{} & {} \left. \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) \right] . \end{aligned}$$

1.3 Case 3: \(Q_2>Q_1+R_1\)

In order to obtain the limiting probabilities of the states we divide the Markov chain states into five parts. The first part includes all the available states from state \((Q_2,A)\) to \((Q_1+R_1+1,A)\). The second part includes all the states from \((Q_2,U)\) to \((Q_1+R_1+1,U)\); the third consists of all the available states from \((Q_1+R_1,A)\) to \((R_1+1,A)\), fourth part includes states \((Q_1+R_1,U)\) to \((R_1+1,U)\), and fifth part includes all the remaining states. Next, we obtain the limiting probabilities of these parts separately.

All the states of the first part can be written as an equation of the limiting probability of \((Q_2,A)\) state. By doing so, we write the following equation for the limiting probabilities of the first part:

$$\begin{aligned} P_{Q_2-j,A}= & {} \left( \frac{\lambda }{\lambda +\mu }\right) ^{j} P_{Q_2,A} +\frac{\alpha }{\lambda +\mu }P_{Q_2-j,U}, \qquad {j=1,\ldots ,Q_2-Q_1-R_1-1}, \end{aligned}$$
(51)
$$\begin{aligned} P_{Q_2-j,U}= & {} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j} P_{Q_2,U} +\frac{\mu }{\lambda +\alpha }P_{Q_2-j,A}, \qquad {j=1,\ldots ,Q_2-Q_1-R_1-1}, \end{aligned}$$
(52)
$$\begin{aligned} P_{Q_2,A}= & {} \frac{\alpha }{\lambda +\mu }P_{Q_2,U}. \end{aligned}$$
(53)

From Eqs. (51), (52), and (53) we obtain the following for limiting probabilities of the first part:

$$\begin{aligned} P_{Q_2-j,A}&=\frac{\alpha (\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left[ \left( \frac{\lambda }{\lambda +\mu }\right) ^{j}+ \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j} \right] P_{Q_2,U},\nonumber \\&\quad {j=1,\ldots ,Q_2-Q_1-R_1-1}. \end{aligned}$$
(54)

The sum of the probabilities of these states is

$$\begin{aligned}&\sum _{j=0}^{Q_2-Q_1-R_1-1} P_{Q_2-j,A}\nonumber \\&\quad =\frac{\alpha }{\lambda +\mu }P_{Q_2,U} +\sum _{j=1}^{Q_2-Q_1-R_1-1}\frac{\alpha (\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left[ \left( \frac{\lambda }{\lambda +\mu }\right) ^{j}+ \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j} \right] P_{Q_2,U}\nonumber \\&\quad =\frac{\lambda +\alpha }{\lambda +\alpha +\mu }\left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \nonumber \\&\qquad \left. +\frac{\alpha (\lambda +\alpha +\mu )}{(\lambda +\mu )(\lambda +\alpha )}\right] P_{Q_2,U}. \end{aligned}$$
(55)

For the second part, we follow steps similar to part one:

$$\begin{aligned} P_{Q_2-j,U}&=\left[ \frac{(\mu +\lambda )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \right] P_{Q_2,U}, \nonumber \\&\quad {j=1,\ldots ,Q_2-Q_1-R_1-1}. \end{aligned}$$
(56)

For the sum of these states, we have

$$\begin{aligned}&\sum _{j=0}^{Q_2-Q_1-R_1-1}P_{Q_2-j,U}\nonumber \\&\quad = P_{Q_2,U}+\sum _{j=1}^{Q_2-Q_1-R_1-1}\left[ \frac{(\mu +\lambda ) (\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \right] P_{Q_2,U} \nonumber \\&\quad =\frac{\lambda +\mu }{\lambda +\alpha +\mu }\left[ \frac{\lambda +\alpha }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1} \right) +\frac{\alpha }{\lambda +\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \nonumber \\&\quad \left. +\frac{\lambda +\alpha +\mu }{\lambda +\mu } \right] P_{Q_2,U}. \end{aligned}$$
(57)

Now, let us try to obtain the limiting probabilities of the third part:

$$\begin{aligned} P_{Q_1+R_1-j,A}= \left( \frac{\lambda }{\lambda +\mu } \right) ^{j} P_{Q_1+R_1,A}, \qquad {j=0,\ldots ,Q_1-1}. \end{aligned}$$
(58)

The sum of these states is

$$\begin{aligned} \sum _{j=0}^{Q_1-1}P_{Q_1+R_1-j,A}&=\frac{1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}}{1-\frac{\lambda }{\lambda +\mu }}P_{Q_1+R_1,A} \nonumber \\&=\frac{\lambda +\mu }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) P_{Q_1+R_1,A}. \end{aligned}$$
(59)

For the fifth part, we have

$$\begin{aligned} P_{R_1-j,U} = \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}P_{R_1+1,U}, \qquad {j=0,\ldots ,R_1-1}. \end{aligned}$$
(60)

The sum of the probabilities of the states in the fifth part is

$$\begin{aligned} \sum _{j=0}^{R_1-1} P_{R_1-j,U}&=\frac{\lambda }{\lambda +\alpha } \frac{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}}{1-\frac{\lambda }{\lambda +\alpha }}P_{R_1+1,U} \nonumber \\&=\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U}. \end{aligned}$$
(61)

For the fourth part, we have the following:

$$\begin{aligned} P_{Q_1+R_1,U}&= \frac{\mu }{ \lambda +\alpha } P_{Q_1+R_1,A} +\frac{\lambda }{ \lambda +\alpha } P_{Q_1+R_1+1,U}. \end{aligned}$$
(62)

Then,

$$\begin{aligned} P_{Q_1+R_1-1,U}&=\frac{\mu }{\lambda +\alpha }P_{Q_1+R_1-1,A}+ \frac{\lambda }{\lambda +\alpha }P_{Q_1+R_1,U} \nonumber \\&=\left( \frac{\mu }{\lambda +\alpha }\right) \left( \frac{\lambda }{\lambda +\mu }\right) P_{Q_1+R_1,A}\nonumber \\&\quad +\left( \frac{\mu }{\lambda +\alpha }\right) \left( \frac{\lambda }{\lambda +\alpha }\right) P_{Q_1+R_1,A} +\left( \frac{\lambda }{\lambda +\alpha }\right) ^{2}P_{Q_1+R_1+1,U}, \end{aligned}$$
(63)
$$\begin{aligned} P_{Q_1+R_1-2,U}&=\frac{\mu }{\lambda +\alpha }P_{Q_1+R_1-2,A}+ \frac{\lambda }{\lambda +\alpha }P_{Q_1+R_1-1,U} \nonumber \\&= \frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu }\right) ^{2} P_{Q_1+R_1,A}\nonumber \\&\quad + \frac{\mu }{\lambda +\alpha }\frac{\lambda }{\lambda +\mu }\frac{\lambda }{\lambda +\alpha }P_{Q_1+R_1,A} +\frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{2}P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\lambda }{\lambda +\alpha }\right) ^{3}P_{Q_1+R_1+1,U}. \end{aligned}$$
(64)

The generalized form is as follows:

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu \lambda ^j}{\lambda +\alpha }\left[ \sum _{k=0}^{j}\frac{1}{(\lambda +\alpha )^k(\lambda +\mu )^{j-k}} \right] P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j+1}P_{Q_1+R_1+1,U} \nonumber \\&=\frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \left[ \sum _{k=0}^{j} \left( \frac{\lambda +\mu }{\lambda +\alpha } \right) ^k \right] P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j+1}P_{Q_1+R_1+1,U} \nonumber \\ P_{Q_1+R_1-j,U}&=\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{j+1}\right) P_{Q_1+R_1,A}\nonumber \\&\quad + \left( \frac{\lambda }{\lambda +\alpha } \right) ^{j+1}P_{Q_1+R_1+1,U}, \nonumber \\&\quad j=0,\ldots ,Q_1-1. \end{aligned}$$
(65)

For \((R_1+1,U)\) state, we have

$$\begin{aligned} P_{R_1+1,U}&=\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}P_{Q_1+R_1+1,U}. \end{aligned}$$
(66)

Note that we can obtain \(P_{Q_1+R_1+1,U}\) from Eq. (56) as follows:

$$\begin{aligned} P_{Q_1+R_1+1,U}&=\left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} \right. \nonumber \\&\quad \left. + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] P_{Q_2,U}. \end{aligned}$$
(67)

Let us try to find the sum of series in last equation. We have

$$\begin{aligned} \sum _{j=0}^{Q_1-1}P_{Q_1+R_1-j,U}&=\left[ \frac{\lambda +\mu }{\alpha -\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \right. \nonumber \\&\quad \left. -\frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1+1,U}. \end{aligned}$$
(68)

For \((Q_2,U)\) state, we have the following equation:

$$\begin{aligned} P_{Q_2,U}=\frac{\lambda }{\lambda +\alpha }P_{1,U}+\frac{\mu }{\lambda +\alpha }P_{Q_2,A}. \end{aligned}$$
(69)

We replace \(P_{Q_2,A}\) from Eq. (53):

$$\begin{aligned} P_{Q_2,U}=\frac{\lambda +\mu }{\lambda +\mu +\alpha }P_{1,U}. \end{aligned}$$
(70)

From the equation for the fifth part, we obtain \(P_{1,U}\):

$$\begin{aligned} P_{1,U}=\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}P_{R_1+1,U}. \end{aligned}$$
(71)

Then,

$$\begin{aligned} P_{Q_2,U}=\frac{\lambda +\mu }{\lambda +\mu +\alpha } \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}P_{R_1+1,U}. \end{aligned}$$
(72)

For \(P_{R_1+1,U}\), we have,

$$\begin{aligned} P_{R_1+1,U}&=\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1,A} +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \times \nonumber \\&\quad \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} \right. \nonumber \\&\quad \left. + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \nonumber \\&\quad \times \frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}P_{R_1+1,U} \nonumber \\ P_{R_1+1,U}&=\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1,A}+ \nonumber \\&\quad \frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] P_{R_1+1,U} \nonumber \\ P_{R_1+1,U}&=\frac{\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } P_{Q_1+R_1,A} \end{aligned}$$
(73)

Then for \(P_{Q_2,U}\),

$$\begin{aligned} P_{Q_2,U}=\frac{\frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } P_{Q_1+R_1,A} \end{aligned}$$
(74)
$$\begin{aligned} 1&=\frac{\lambda +\alpha }{\lambda +\alpha +\mu }\left[ \frac{\alpha }{\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \nonumber \\&\quad +\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\alpha (\lambda +\alpha +\mu )}{(\lambda +\mu )(\lambda +\alpha )}\Bigg ] P_{Q_2,U} \nonumber \\&\quad +\frac{\lambda +\mu }{\lambda +\alpha +\mu }\Bigg [\frac{\lambda +\alpha }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1} \right) \nonumber \\&\quad \left. +\frac{\alpha }{\lambda +\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha +\mu }{\lambda +\mu } \right] P_{Q_2,U} \nonumber \\&\quad +\frac{\lambda +\mu }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) P_{Q_1+R_1,A} +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} \nonumber \\&\quad +\left[ \frac{\lambda +\mu }{\alpha -\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] \nonumber \\&\quad P_{Q_1+R_1,A} +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1+1,U} \end{aligned}$$
(75)
$$\begin{aligned} 1&=\left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \nonumber \\&\quad \left. +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] P_{Q_2,U} + \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1+1,U} \nonumber \\&\quad +\left[ \frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] P_{Q_1+R_1,A}. \end{aligned}$$
(76)

Then,

$$\begin{aligned}&\left[ \left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] \right. \nonumber \\&\quad \times \frac{\frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\&\quad +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \frac{\frac{\mu }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\&\quad +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1}\right. \nonumber \\&\quad \left. + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \nonumber \\&\quad \times \frac{\frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\&\quad \left. +\frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] ^{-1}=P_{Q_1+R_1,A}. \end{aligned}$$
(77)

Expected inventory level can be computed as follows:

$$\begin{aligned} I(Q_1;Q_2;R_1)&=\sum _{j=0}^{Q_2-Q_1-R_1-1} (Q_2-j)(P_{Q_2-j,A}+ P_{Q_2-j,U}) + \sum _{j=0}^{R_1-1}(R_1-j) P_{R_1-j,U} \nonumber \\&\quad +\sum _{j=0}^{Q_1-1}(Q_1+R_1-j)(P_{Q_1+R_1-j,A}+P_{Q_1+R_1-j,U}). \end{aligned}$$
(78)

Then,

$$\begin{aligned} I(Q_1;Q_2;R_1)&= Q_2 \sum _{j=0}^{Q_2-Q_1-R_1-1}(P_{Q_2-j,A}+P_{Q_2-j,U})\nonumber \\&\quad +(Q_1+R_1)\sum _{j=0}^{Q_1-1}(P_{Q_1+R_1-j,A}+ P_{Q_1+R_1-j,U}) \nonumber \\&\quad +R_1\sum _{j=0}^{R_1-1}P_{R_1-j,U} - \sum _{j=0}^{Q_2-Q_1-R_1-1} j (P_{Q_2-j,A}+P_{Q_2-j,U})\nonumber \\&\quad - \sum _{j=0}^{R_1-1} j P_{R_1-j,U} \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j (P_{Q_1+R_1-j,A}+ P_{Q_1+R_1-j,U}). \end{aligned}$$
(79)

We replace the probabilities \(P_{Q_2-j,A}\), \(P_{Q_1+R_1-j,A}\), \(P_{Q_2-j,U}\), \(P_{Q_1+R_1-j,U} \), and \(P_{R_1-j,U}\) from Eqs. (55), (59), (57), (61), and (68):

$$\begin{aligned} I(Q_1;Q_2;R_1)&=Q_2 \left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \nonumber \\&\quad \left. + \frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] P_{Q_2,U} +(Q_1+R_1) \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1+1,U} \nonumber \\&\quad +(Q_1+R_1)\left[ \frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +R_1 \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} -\frac{\alpha }{\lambda } \times P_{Q_2,U} \times \nonumber \\&\quad \left[ \frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1+1}-(Q_2-Q_1-R_1) \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1} +\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right] \nonumber \\&\quad -\frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1}-(Q_2-Q_1-R_1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1}+1}{(1-\frac{\lambda }{\lambda +\alpha })^2} P_{Q_2,U} \nonumber \\&\quad -\left( \frac{\lambda }{\lambda +\alpha }\right) \left( \frac{(R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right) P_{R_1+1,U} \nonumber \\&\quad -\left( \frac{\alpha }{\alpha -\mu }\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1} -Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right) P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\mu (\mu +\lambda )}{(\lambda +\alpha )(\alpha -\mu )}\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} +\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right) P_{Q_1+R_1,A} \nonumber \\&\quad -\left( \frac{\lambda }{\lambda +\alpha } \right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right) P_{Q_1+R_1+1,U}. \end{aligned}$$
(80)

Note that the equations for this case would not bear any changes for \(R_1=0\).

For this case, \(I(Q_1;Q_2;R_1)\) and \(P_{1,U}\) that is used when calculating \(SF(Q_1;Q_2;R_1)\) can be written in terms of \(\alpha \), \(\lambda \), \(\mu \), \(Q_1\), \(Q_2\), and \(R_1\) as follows:

$$\begin{aligned} P_{1,U}= & {} \left[ \frac{\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \left[ \left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \right. \right. \nonumber \\{} & {} \left. +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] \frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \nonumber \\{} & {} +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \nonumber \\{} & {} \left. \left. \times \frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right] +\frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] ^{-1} \nonumber \\{} & {} \times \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\frac{\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \end{aligned}$$
$$\begin{aligned} I(Q_1;Q_2;R_1)= & {} \left[ \frac{\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \left[ \left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \right. \right. \nonumber \\{} & {} \left. +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] \frac{\lambda +\mu }{\lambda +\mu +\alpha } \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \nonumber \\{} & {} +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \nonumber \\{} & {} \left. \left. \times \frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right] +\frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] ^{-1} \nonumber \\{} & {} \times \left[ \frac{\frac{\lambda +\mu }{\lambda +\mu +\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \right. \nonumber \\{} & {} \times \left[ Q_2 \Bigg [\frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) + \frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] \nonumber \\{} & {} +(Q_1+R_1) \frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1}\right. \nonumber \\{} & {} \left. + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \nonumber \\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad -\frac{\alpha }{\lambda } \times \left[ \frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1+1} -(Q_2-Q_1-R_1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right] \nonumber \\{} & {} \quad -\frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1}-(Q_2-Q_1-R_1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1}+1}{(1-\frac{\lambda }{\lambda +\alpha })^2} \nonumber \\{} & {} \quad -\left( \frac{\lambda }{\lambda +\alpha } \right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1} -Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right) \nonumber \\{} & {} \quad \left. \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \right] \nonumber \\{} & {} \quad \left. +(Q_1+R_1)\Bigg [\frac{\alpha (\lambda +\mu )}{\mu (\alpha -\mu )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) - \frac{\mu (\lambda +\mu )}{\alpha (\alpha -\mu )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \right] \nonumber \\{} & {} \quad +R_1 \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \frac{\frac{\mu }{\alpha -\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\{} & {} \quad -\left( \frac{\lambda }{\lambda +\alpha }\right) \left( \frac{(R_1-1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1} +\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right) \frac{\frac{\mu }{\alpha -\mu } \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\mu }{\lambda +\alpha }\right) ^{Q_1}\right) }{\nonumber }\\{} & {} \quad {1-\frac{(\lambda +\mu )^2}{(\lambda +\mu +\alpha )^2} \left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-2} + \frac{\mu \alpha }{\lambda ^2} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\{} & {} \quad -\left( \frac{\alpha }{\alpha -\mu }\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1} -Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right) \nonumber \\{} & {} \quad \left. +\left( \frac{\mu (\mu +\lambda )}{(\lambda +\alpha )(\alpha -\mu )}\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right) \right] \end{aligned}$$

Limiting probabilities and expected inventory levels for frequent shortages with slow recovery, \(\mu >\alpha \)

1.1 Case 1: \(Q_2<R_1\)

All the equations of Case 1 for frequent shortage case are the same as the Case 1 of rare shortage except the second part. To obtain the limiting probabilities of the second part, we write the limiting probabilities of all the states in this part as a function of the limiting probabilities of \((Q_1+R_1,U)\) and \((Q_1+R_1,A)\) states. We have the following equation for the \((Q_1+R_1,U)\) state:

$$\begin{aligned} P_{Q_1+R_1,U}= \left( \frac{\mu }{ \lambda +\alpha }\right) P_{Q_1+R_1,A}. \end{aligned}$$
(81)

For the second state of this part, we have the following:

$$\begin{aligned} P_{Q_1+R_1-1,U}= \left( \frac{\mu }{ \lambda +\alpha }\right) P_{Q_1+R_1-1,A}+\left( \frac{\lambda }{ \lambda +\alpha }\right) P_{Q_1+R_1,U}. \end{aligned}$$

Using Eqs. (7) and (81), we substitute \(P_{Q_1+R_1-1,A}\) and \(P_{Q_1+R_1,U}\) respectively:

$$\begin{aligned} P_{Q_1+R_1-1,U}= \left( \frac{\mu }{ \lambda +\alpha }\left( \frac{\lambda }{\lambda +\mu }\right) +\frac{\lambda }{ \lambda +\alpha } \left( \frac{\mu }{ \lambda +\alpha }\right) \right) P_{Q_1+R_1,A}. \end{aligned}$$

The generalized form of the probabilities of this case is as follows:

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu \lambda ^j}{\lambda +\alpha }\left[ \sum _{k=0}^{j}\frac{1}{(\lambda +\alpha )^{j-k}(\lambda +\mu )^{k}} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(82)

Let us try to find the sum of series in last equation. We have,

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j}\sum _{k=0}^{j}\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{k} P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j}\frac{1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j+1} }{\frac{\mu -\alpha }{\lambda +\mu } }P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j+1} \right) P_{Q_1+R_1,A}, \nonumber \\&\qquad {j=0,\ldots ,Q_1-1}. \end{aligned}$$
(83)

We can obtain the following equation for \((R_1+1,U)\) state when \(\alpha <\mu \) and \(Q_2<R_1\):

$$\begin{aligned} P_{R_1+1,U}&= \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1-1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1} \right) P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(84)

The sum of the states in this part is

$$\begin{aligned} \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,U}&=\sum _{j=0}^{Q_1-1} \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j+1} \right) P_{Q_1+R_1,A} \nonumber \\&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )} \left[ \frac{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}}{1-\frac{\lambda }{\lambda +\alpha }} -\frac{\lambda +\alpha }{\lambda +\mu }\frac{1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} }{1-\frac{\lambda }{\lambda +\mu } } \right] P_{Q_1+R_1,A} \nonumber \\&=\left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) -\frac{\lambda +\mu }{\mu -\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) \right] P_{Q_1+R_1,A}. \end{aligned}$$
(85)

Considering the fact the sum of the limiting probabilities of all of the states must add up to 1, we obtain the limiting probability of \(Q_1+R_1,A\) state as follows:

$$\begin{aligned}&\left[ \frac{\lambda +\mu }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) + \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \right. \nonumber \\&\quad \left. -\frac{\lambda +\mu }{\mu -\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +\frac{\lambda }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] P_{R_1+1,U} +\frac{\lambda }{\alpha }\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} P_{R_1+1,U} =1 \end{aligned}$$
(86)
$$\begin{aligned}&1=\left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) - \frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) \right] \nonumber \\&\quad P_{Q_1+R_1,A} +\frac{\lambda }{\alpha }P_{R_1+1,U} \end{aligned}$$
(87)
$$\begin{aligned}&1=\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) - \frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) \nonumber \\&\quad +\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )}\left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} -\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] \Bigg ] P_{Q_1+R_1,A} \end{aligned}$$
(88)
$$\begin{aligned}&\quad 1=\frac{(\lambda +\mu )(\alpha +\mu )}{\alpha \mu }\Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )P_{Q_1+R_1,A} \end{aligned}$$
(89)
$$\begin{aligned}&\quad P_{Q_1+R_1,A}=\frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1} \end{aligned}$$
(90)

As it can be seen, the equations are the same in case 1 for both conditions. As a result, the inventory level of this case is be equal to the inventory level of case 1 for the rare shortage condition.

For this case, \(I(Q_1;Q_2;R_1)\) and \(P_{1,U}\) that is used when calculating \(SF(Q_1;Q_2;R_1)\) can be written in terms of \(\alpha \), \(\lambda \), \(\mu \), \(Q_1\), \(Q_2\), and \(R_1\) as follows:

$$\begin{aligned} \begin{aligned} P_{1,U}&=\frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1+j}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] \\&\quad \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1}\\ I(Q_1;Q_2;R_1)&=(Q_1+R_1)-\frac{\lambda }{\alpha } \left[ Q_1+(R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1-Q_2} \right] \\&\quad \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1} \\&\quad -\Bigg [\left( \frac{\alpha }{\alpha -\mu }\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1} -Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right) \\&\quad -\left( \frac{\mu (\lambda +\mu )}{(\alpha -\mu )(\lambda +\alpha )}\right) \left( \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \Bigg ]\\&\quad \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1} \\&\quad -\Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) \left( \frac{(R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1-Q_2+1}-(R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1-Q_2} +\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \\&\quad +\left( \frac{\left( \frac{\lambda }{\lambda +\alpha }\right) ^{ R_1-Q_2+1}}{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\right) \left( \frac{(Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2+1} -Q_2\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \right) \Bigg ]\\&\quad \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left[ \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] \frac{\alpha \mu }{(\lambda +\mu )(\alpha +\mu )} \Bigg ( 1-\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1} \Bigg )^{-1} \end{aligned} \end{aligned}$$

1.2 Case 2: \(R_1 \le Q_2\le Q_1+R_1\)

All the equations of Case 2 for the frequent shortage case are the same as Case 2 for the rare shortage condition except the second and third parts. The equations for the second part are similar to part two of case 1, but the range of the states, j, has to be updated. We have the following equation for the \((Q_1+R_1,U)\) state:

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j+1} \right) P_{Q_1+R_1,A}, \nonumber \\&\quad {j=0,\ldots ,Q_1+R_1-Q_2-1}. \end{aligned}$$
(91)

The sum of the states in this part, for case 2, is

$$\begin{aligned}&\sum _{j=0}^{Q_1+R_1-Q_2-1} P_{Q_1+R_1-j,U} \nonumber \\&\quad =\left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) \right. \nonumber \\&\qquad \left. -\frac{\lambda +\mu }{\mu -\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) \right] P_{Q_1+R_1,A}. \end{aligned}$$
(92)

For the third part, we obtain the limiting probabilities as a function of \(P_{Q_2,U}\) and \(P_{Q_1+R_1,A}\):

$$\begin{aligned} \begin{aligned} P_{Q_2-j,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} + \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+j}\\&\quad \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j} \right) P_{Q_1+R_1,A}, \\&\quad {j=1,\ldots ,Q_2-R_1-1}. \end{aligned} \end{aligned}$$
(93)

Note that the range is starting from one, not zero. The sum of the probabilities of the third part is

$$\begin{aligned} \sum _{j=0}^{Q_2-R_1-1} P_{Q_2-j,U}&=\sum _{j=1}^{Q_2-R_1-1} \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+j}\nonumber \\&\quad \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j} \right) P_{Q_1+R_1,A} \nonumber \\&\quad + \sum _{j=0}^{Q_2-R_1-1}\left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} \nonumber \\&=\frac{\lambda +\alpha }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U}\nonumber \\&\quad +\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right] P_{Q_1+R_1,A} \nonumber \\&\quad - \frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left[ 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right] P_{Q_1+R_1,A}. \end{aligned}$$
(94)

For \(P_{R_1+1,U}\), we have,

$$\begin{aligned} P_{R_1+1,U}&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1}P_{Q_2,U} + \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}\nonumber \\&\quad \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) P_{Q_1+R_1,A}. \end{aligned}$$
(95)

In order to obtain the closed form equation for the limiting probability of \((Q_2,U)\) state, we use the equations from (38) and (95):

$$\begin{aligned} P_{1,U}&=\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}P_{R_1+1,U} \nonumber \\&= \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-1}P_{Q_2,U} + \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1}\nonumber \\&\quad \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) P_{Q_1+R_1,A}. \end{aligned}$$
(96)

From (34), we also know that

$$\begin{aligned} P_{Q_2,U}=\frac{\lambda }{\lambda +\alpha }\left( P_{Q_2+1,U}+P_{1,U}\right) +\frac{\mu }{\lambda +\alpha }P_{Q_2,A}. \end{aligned}$$
(97)

From (91), we have the following for \(P_{Q_2+1,U}\):

$$\begin{aligned} P_{Q_2+1,U}&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2-1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) P_{Q_1+R_1,A}. \end{aligned}$$
(98)

From the second case of rare shortage condition, we know that

$$\begin{aligned} P_{Q_2,A} = \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}P_{Q_1+R_1,A}. \end{aligned}$$
(99)

Then,

$$\begin{aligned} P_{Q_2,U}&=\left[ \frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) }{ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } + \frac{\frac{\mu }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\right. \nonumber \\&\quad \left. +\frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \right] P_{Q_1+R_1,A}. \end{aligned}$$
(100)

Now, for \(P_{Q_1+R_1,A}\), we have,

$$\begin{aligned} 1&=\frac{\lambda +\mu }{\mu }\left[ 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right] P_{Q_1+R_1,A}\nonumber \\&\quad + \frac{\lambda }{\alpha }\left( 1- \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U} \nonumber \\&\quad + \left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \right) \right. \nonumber \\&\quad \left. -\frac{\lambda +\mu }{\mu -\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad + \frac{\lambda +\alpha }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U}\nonumber \\&\quad +\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right] P_{Q_1+R_1,A} \nonumber \\&\quad - \frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left[ 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right] P_{Q_1+R_1,A}\nonumber \\ P_{Q_1+R_1,A}&=\left[ \frac{\lambda +\mu }{\mu } \left( 1 - \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) + \frac{\lambda +\mu }{\alpha }- \frac{\lambda }{\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}\right. \nonumber \\&\quad +\frac{\lambda (\lambda +\mu )}{\alpha (\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2} \nonumber \\&\quad -\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} +\frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda +\mu }{\lambda }-\frac{\mu }{\alpha } \right) \nonumber \\&\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}\left( \frac{\lambda +\alpha }{\lambda +\mu } \right) ^{Q_2-R_1}\bigg ]^{-1}\nonumber \\ P_{Q_1+R_1,A}&=\left[ \frac{\lambda +\mu }{\mu } \left( 1 - \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) + \frac{\lambda +\mu }{\alpha }- \frac{\lambda }{\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2}\right. \nonumber \\&\quad +\frac{\lambda +\mu }{\lambda +\alpha }\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2} \nonumber \\&\quad \times \left( \frac{\lambda }{\alpha }+\frac{\lambda +\mu }{\mu -\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) - \frac{\mu (\lambda +\mu )}{\mu -\alpha }\nonumber \\&\quad \left. \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}\left( \frac{1}{\lambda } +\frac{1}{\alpha }\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \right] ^{-1} \end{aligned}$$
(101)

Expected inventory level can be computed as follows:

$$\begin{aligned} I(Q_1;Q_2;R_1)&= \sum _{j=0}^{Q_1-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,A} \nonumber \\&\quad + \sum _{j=0}^{Q_1+R_1-Q_2-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,U} \nonumber \\&\quad + \sum _{j=0}^{Q_2-R_1-1} \left( Q_2-j\right) P_{Q_2-j,U} + \sum _{j=0}^{R_1-1}(R_1-j) P_{R_1-j,U}. \end{aligned}$$
(102)

Then,

$$\begin{aligned} I(Q_1;Q_2;R_1)&=(Q_1+R_1)\left( \sum _{j=0}^{Q_1-1} P_{Q_1+R_1-j,A} +\sum _{j=0}^{Q_1+R_1-Q_2-1} P_{Q_1+R_1-j,U} \right) \nonumber \\&\quad -\sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,A} \nonumber \\&\quad -\sum _{j=0}^{Q_1+R_1-Q_2-1} j P_{Q_1+R_1-j,U} + Q_2 \sum _{j=0}^{Q_2-R_1-1} P_{Q_2-j,U} -\sum _{j=0}^{Q_2-R_1-1}j P_{Q_2-j,U} \nonumber \\&\quad + R_1 \sum _{j=0}^{R_1-1} P_{R_1-j,U} -\sum _{j=0}^{R_1-1}j P_{R_1-j,U} \nonumber \\&\quad =(Q_1+R_1) -Q_1\left( \frac{\lambda }{\alpha }\right) \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U} \nonumber \\&\quad -(Q_1+R_1-Q_2) \left( \frac{\lambda +\alpha }{\alpha }\right) \left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U} \nonumber \\&\quad -(Q_1+R_1-Q_2) \left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +(Q_1+R_1-Q_2)\left[ \frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j P_{Q_1+R_1-j,A} -\sum _{j=0}^{Q_1+R_1-Q_2-1} j P_{Q_1+R_1-j,U} \nonumber \\&\quad -\sum _{j=0}^{Q_2-R_1-1}j P_{Q_2-j,U} -\sum _{j=0}^{R_1-1}j P_{R_1-j,U}. \end{aligned}$$
(103)

We replace the sum of probabilities from Eqs. (94) and (39), and \(P_{Q_1+R_1-j,A} \), \(P_{Q_1+R_1-j,U} \), \(P_{R_1-j,U} \), and \(P_{Q_2-j,U} \) from Eqs. (30), (91), (93), and (38):

$$\begin{aligned} I(Q_1;Q_2;R_1)&= (Q_1+R_1) -Q_1\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U}\nonumber \\&\quad -(Q_1+R_1-Q_2) \frac{\lambda +\alpha }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U} \nonumber \\&\quad -(Q_1+R_1-Q_2) \left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +(Q_1+R_1-Q_2)\left[ \frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2}\right. \nonumber \\&\quad \left. \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad -\left[ \sum _{j=0}^{Q_1-1} j \left( \frac{\lambda }{\lambda +\mu }\right) ^{j} +\sum _{j=0}^{Q_1+R_1-Q_2-1} j\left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \right. \nonumber \\&\quad \left. \left( \frac{\lambda }{\lambda +\alpha } \right) ^{j}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j+1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad -\sum _{j=0}^{Q_2-R_1-1}j \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j}P_{Q_2,U} +j \left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+j}\nonumber \\&\quad \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j} \right) P_{Q_1+R_1,A} +\sum _{j=0}^{R_1-1}j \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}P_{R_1+1,U}. \end{aligned}$$
(104)

We can rewrite the last equation as

$$\begin{aligned} I(Q_1;Q_2;R_1)&= (Q_1+R_1) -Q_1\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) P_{R_1+1,U} \nonumber \\&\quad -(Q_1+R_1-Q_2) \frac{\lambda +\alpha }{\alpha }\left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] P_{Q_2,U} \nonumber \\&\quad -(Q_1+R_1-Q_2) \left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad +(Q_1+R_1-Q_2)\left[ \frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \right] P_{Q_1+R_1,A} \nonumber \\&\quad -\left[ \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right. \nonumber \\&\quad +\left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \nonumber \\&\quad \left. -\left( \frac{\mu }{\mu -\alpha }\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \right] P_{Q_1+R_1,A} \nonumber \\&\quad -\frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} P_{Q_2,U} \nonumber \\&\quad - \left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2}\left[ \frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\right. \nonumber \\&\quad \left. - \frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \right] P_{Q_1+R_1,A} \nonumber \\&\quad - \left( \frac{\lambda }{\lambda +\alpha }\right) \frac{(R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}P_{R_1+1,U}. \end{aligned}$$
(105)

For this case, \(I(Q_1;Q_2;R_1)\) and \(P_{1,U}\) that is used when calculating \(SF(Q_1;Q_2;R_1)\) can be written in terms of \(\alpha \), \(\lambda \), \(\mu \), \(Q_1\), \(Q_2\), and \(R_1\) as follows:

$$\begin{aligned} \begin{aligned} P_{1,U}&= \bigg [\frac{\lambda +\mu }{\mu } \bigg (1 - \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \bigg ) + \frac{\lambda +\mu }{\alpha }- \frac{\lambda }{\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \\&\quad +\frac{\lambda (\lambda +\mu )}{\alpha (\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2} -\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} +\frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \\&\quad \times \left( \frac{\lambda +\mu }{\lambda }-\frac{\mu }{\alpha } \right) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( \frac{\lambda +\alpha }{\lambda +\mu } \right) ^{Q_2-R_1}\bigg ]^{-1} \\&\quad \Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-1} \Bigg [ \frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) }{ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \\&\quad + \frac{\frac{\mu }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \\&\quad +\frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \Bigg ] \\&\quad + \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \Bigg ]. \end{aligned} \end{aligned}$$
$$\begin{aligned}{} & {} I(Q_1;Q_2;R_1)=(Q_1+R_1) + \bigg [\frac{\lambda +\mu }{\mu } \bigg (1 - \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \bigg ) \\{} & {} \quad + \frac{\lambda +\mu }{\alpha }- \frac{\lambda }{\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} +\frac{\lambda (\lambda +\mu )}{\alpha (\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2} \\{} & {} \quad -\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} +\frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \\{} & {} \quad \times \left( \frac{\lambda +\mu }{\lambda }-\frac{\mu }{\alpha } \right) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( \frac{\lambda +\alpha }{\lambda +\mu } \right) ^{Q_2-R_1}\bigg ]^{-1} \\{} & {} \quad \Bigg [ -Q_1\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\right) \Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1}\\{} & {} \quad \Bigg [ \frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) }{ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} }\\{} & {} \quad + \frac{\frac{\mu }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} +\frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \Bigg ] \\{} & {} \quad + \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \Bigg ] \\{} & {} \quad -(Q_1+R_1-Q_2) \frac{\lambda +\alpha }{\alpha } \left[ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1} \right] \\{} & {} \quad \Bigg [ \frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) }{ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } + \frac{\frac{\mu }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \\{} & {} \quad +\frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \Bigg ] \\{} & {} \quad -(Q_1+R_1-Q_2) \Bigg [ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1} \Bigg ) \Bigg ] \\{} & {} \quad +(Q_1+R_1-Q_2)\Bigg [ \frac{(\lambda +\mu )^2}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2} \Bigg (1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-R_1-1} \Bigg )\Bigg ]\\{} & {} \quad -\Bigg [ \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\\{} & {} \quad +\left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2+1}-(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad -\left( \frac{\mu }{\mu -\alpha }\right) \frac{(Q_1+R_1-Q_2-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2+1} -(Q_1+R_1-Q_2)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+R_1-Q_2}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \Bigg ] \\{} & {} \quad -\frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} \quad \Bigg [ \frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) }{ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } + \frac{\frac{\mu }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}}\\{} & {} \quad +\frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \Bigg ] \\{} & {} \quad - \left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1+R_1-Q_2}\Bigg [ \frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} \quad - \frac{(Q_2-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1+1}-(Q_2-R_1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-R_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} \Bigg ] \\{} & {} \quad - \left( \frac{\lambda }{\lambda +\alpha }\right) \frac{(R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} \quad \times \Bigg [\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-R_1-1}\Bigg [ \frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) }{ 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \\{} & {} \quad +\frac{\frac{\mu }{\lambda +\alpha } \left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2}} \\{} & {} \quad +\frac{ \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1-Q_2}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1+R_1-Q_2} \right) }{1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2} } \Bigg ] \\{} & {} \quad + \frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_2-R_1-1} \right) \Bigg ] \Bigg ], \end{aligned}$$

1.3 Case 3: \(Q_2>Q_1+R_1\)

All parts of this model, except part 4, are the same as the Case 3 of rare shortage condition. So, we just try to find the equations for fourth part and replace the other parts from case 3 of rare-shortage model. For part 4, we have

$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu \lambda ^j}{\lambda +\alpha }\left[ \sum _{k=0}^{j}\frac{1}{(\lambda +\alpha )^{j-k}(\lambda +\mu )^k} \right] P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j+1}P_{Q_1+R_1+1,U} \end{aligned}$$
(106)
$$\begin{aligned} P_{Q_1+R_1-j,U}&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{j+1}\right) P_{Q_1+R_1,A} \nonumber \\&\quad +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{j+1}P_{Q_1+R_1+1,U},\nonumber \\&\quad j=0,\ldots ,Q_1-1. \end{aligned}$$
(107)

Let us try to find the sum of series in last equation. We have

$$\begin{aligned} \sum _{j=0}^{Q_1-1}P_{Q_1+R_1-j,U}&=\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) \nonumber \\&\quad - \frac{\lambda +\mu }{\mu -\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \Bigg ] P_{Q_1+R_1,A} \end{aligned}$$
(108)
$$\begin{aligned}&\quad +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1+1,U}. \end{aligned}$$
(109)

From Eq. (107), we have the following equation for \(P_{R_1+1,U}\):

$$\begin{aligned} P_{R_1+1,U}&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) \nonumber \\&\quad P_{Q_1+R_1,A} +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}P_{Q_1+R_1+1,U}. \end{aligned}$$
(110)

We know the probability of \((Q_1+R_1+1,U)\) and \((Q_2,U)\) from the probability equations for case 3 of rare shortage model, (56) and (72). Then for \(P_{R_1+1,U}\):

$$\begin{aligned} P_{R_1+1,U}=&\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1-1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) P_{Q_1+R_1,A} +\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \nonumber \\&\quad \times \Bigg [\frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} \nonumber \\&\quad + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \Bigg ] \nonumber \\&\quad \times \frac{\lambda +\mu }{\lambda +\mu +\alpha } \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}P_{R_1+1,U} \nonumber \\ P_{R_1+1,U}&=\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1-1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) P_{Q_1+R_1,A} \nonumber \\&\quad + \frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \Bigg [(\lambda +\alpha ) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1}\nonumber \\&\quad + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \Bigg ] P_{R_1+1,U} \nonumber \\ P_{R_1+1,U}&=\frac{\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}\left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] }P_{Q_1+R_1,A}. \end{aligned}$$
(111)

We also know that

$$\begin{aligned} P_{Q_2,U}=\frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] }P_{Q_1+R_1,A}. \end{aligned}$$
(112)

For \(P_{Q_1+R_1,A}\), we have

$$\begin{aligned} 1&=\frac{\lambda +\alpha }{\lambda +\alpha +\mu }\Bigg [ \frac{\alpha }{\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad +\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\alpha (\lambda +\alpha +\mu )}{(\lambda +\mu )(\lambda +\alpha )}\Bigg ] P_{Q_2,U} \nonumber \\&\quad +\frac{\lambda +\mu }{\lambda +\alpha +\mu }\Bigg [\frac{\lambda +\alpha }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1} \right) \nonumber \\&\quad +\frac{\alpha }{\lambda +\mu } \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha +\mu }{\lambda +\mu } \Bigg ] P_{Q_2,U} \nonumber \\&\quad +\frac{\lambda +\mu }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1} \right) P_{Q_1+R_1,A} +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} \nonumber \\&\quad +\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\lambda +\mu }{\mu -\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \Bigg ] \nonumber \\&\quad P_{Q_1+R_1,A} +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) P_{Q_1+R_1+1,U}. \end{aligned}$$
(113)

Then,

$$\begin{aligned} 1&=\Bigg [ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\Bigg ] P_{Q_2,U} + \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} \nonumber \\&\quad +\frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1+1,U} \nonumber \\&\quad +\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \Bigg ] \nonumber \\&\quad P_{Q_1+R_1,A}, \end{aligned}$$
(114)
$$\begin{aligned} P_{Q_1+R_1,A}&=\Bigg [ \Bigg [ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\Bigg ] \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\&\quad + \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \frac{\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\&\quad +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \Bigg [\frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \Bigg ] \nonumber \\&\quad \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \nonumber \\&\quad +\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \Bigg ] \Bigg ] ^{-1}. \end{aligned}$$
(115)

Expected inventory level can be computed as follows:

$$\begin{aligned} I(Q_1;Q_2;R_1)&=\sum _{j=0}^{Q_2-Q_1-R_1-1} (Q_2-j,A)P_{Q_2-j,A}+ \sum _{j=0}^{Q_2-Q_1-R_1-1} \left( Q_2-j\right) P_{Q_2-j,U} \nonumber \\&\quad + \sum _{j=0}^{R_1-1}(R_1-j) P_{R_1-j,U} \nonumber \\&\quad +\sum _{j=0}^{Q_1-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,A} \nonumber \\&\quad +\sum _{j=0}^{Q_1-1} \left( Q_1+R_1-j\right) P_{Q_1+R_1-j,U}. \end{aligned}$$
(116)

Then,

$$\begin{aligned} I(Q_1;Q_2;R_1)&=Q_2 \sum _{j=0}^{Q_2-Q_1-R_1-1}(P_{Q_2-j,A}+P_{Q_2-j,U})\nonumber \\&\quad +(Q_1+R_1)\sum _{j=0}^{Q_1-1}(P_{Q_1+R_1-j,A}+ P_{Q_1+R_1-j,U}) \nonumber \\&\quad +R_1\sum _{j=0}^{R_1-1}P_{R_1-j,U} - \sum _{j=0}^{Q_2-Q_1-R_1-1} j (P_{Q_2-j,A}+P_{Q_2-j,U})\nonumber \\&\quad - \sum _{j=0}^{R_1-1} j P_{R_1-j,U} \nonumber \\&\quad - \sum _{j=0}^{Q_1-1} j (P_{Q_1+R_1-j,A}+ P_{Q_1+R_1-j,U}). \end{aligned}$$
(117)

We replace the probabilities \(P_{Q_2-j,A}\), \(P_{Q_1+R_1-j,A}\), \(P_{Q_2-j,U}\), \(P_{Q_1+R_1-j,U} \), and \(P_{R_1-j,U}\) from Eqs. (55), (59), (57), (108), and (61):

$$\begin{aligned} I(Q_1;Q_2;R_1)&=Q_2\Bigg [\frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad + \frac{\alpha +\lambda +\mu }{\lambda +\mu }\Bigg ] P_{Q_2,U} +(Q_1+R_1)\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1+1,U} \nonumber \\&\quad +(Q_1+R_1)\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \Bigg ] P_{Q_1+R_1,A} \nonumber \\&\quad +R_1 \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} \nonumber \\&\quad -\sum _{j=1}^{Q_2-Q_1-R_1-1}j\frac{\alpha (\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left[ \left( \frac{\lambda }{\lambda +\mu }\right) ^{j} + \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j} \right] P_{Q_2,U} \nonumber \\&\quad -\sum _{j=1}^{Q_2-Q_1-R_1-1}j\Bigg [\frac{(\mu +\lambda )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{j} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )} \left( \frac{\lambda }{\lambda +\mu } \right) ^{j} \Bigg ] P_{Q_2,U} \nonumber \\&\quad -\sum _{j=0}^{Q_1-1}j \left( \frac{\lambda }{\lambda +\mu } \right) ^{j} P_{Q_1+R_1,A}-\sum _{j=0}^{R_1-1} j \left( \frac{\lambda }{\lambda +\alpha }\right) ^{j+1}P_{R_1+1,U} \nonumber \\&\quad -\sum _{j=0}^{Q_1-1} j\frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )} \left( \frac{\lambda }{\lambda +\alpha } \right) ^{j} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu } \right) ^{j+1}\right) \nonumber \\&\quad P_{Q_1+R_1,A} +j \left( \frac{\lambda }{\lambda +\alpha } \right) ^{j+1}P_{Q_1+R_1+1,U} \end{aligned}$$
(118)
$$\begin{aligned} I(Q_1;Q_2;R_1)&=Q_2 \Bigg [\frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \nonumber \\&\quad + \frac{\alpha +\lambda +\mu }{\lambda +\mu }\Bigg ] P_{Q_2,U} +(Q_1+R_1) \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) P_{Q_1+R_1+1,U} \nonumber \\&\quad +(Q_1+R_1)\Bigg [\frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \Bigg ] P_{Q_1+R_1,A} \nonumber \\&\quad +R_1\left( \frac{\lambda }{\alpha }\right) \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) P_{R_1+1,U} -\left( \frac{\alpha }{\lambda }\right) P_{Q_2,U} \times \nonumber \\&\quad \Bigg [ \frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1+1}-(Q_2-Q_1-R_1) \left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\Bigg ] \nonumber \\&\quad -\frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1}-(Q_2-Q_1-R_1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1}+1}{(1-\frac{\lambda }{\lambda +\alpha })^2} P_{Q_2,U} \nonumber \\&\quad -\left( \frac{\lambda }{\lambda +\alpha }\right) \frac{(R_1-1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1 \left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}P_{R_1+1,U} \nonumber \\&\quad +\left( \frac{\alpha }{\mu -\alpha } \right) \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2} P_{Q_1+R_1,A} \nonumber \\&\quad -\left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \frac{(Q_1-1) \left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} P_{Q_1+R_1,A} \nonumber \\&\quad -\left( \frac{\lambda }{\lambda +\alpha } \right) \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} P_{Q_1+R_1+1,U}. \end{aligned}$$
(119)

Note that this equation is the same with case 3 of rare shortage condition.

For this case, \(I(Q_1;Q_2;R_1)\) and \(P_{1,U}\) that is used when calculating \(SF(Q_1;Q_2;R_1)\) can be written in terms of \(\alpha \), \(\lambda \), \(\mu \), \(Q_1\), \(Q_2\), and \(R_1\) as follows:

$$\begin{aligned} P_{1,U}= & {} \left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1}\\{} & {} \frac{\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] }P_{Q_1+R_1,A} \\ I(Q_1;Q_2;R_1)= & {} \left[ \left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) \right. \right. \\{} & {} \left. +\frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] \\{} & {} \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} + \frac{\lambda }{\alpha } \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \\{} & {} \times \frac{\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} +\frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \\{} & {} \times \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \\{} & {} \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \left. +\left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \right] \right] ^{-1} \\{} & {} \left[ Q_2 \left[ \frac{\alpha }{\mu }\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_2-Q_1-R_1-1}\right) +\frac{\lambda +\alpha }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_2-Q_1-R_1-1}\right) + \frac{\alpha +\lambda +\mu }{\lambda +\mu }\right] \right. \\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \quad +(Q_1+R_1) \frac{\lambda }{\alpha }\left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1} \right) \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \\{} & {} \quad \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \quad +(Q_1+R_1)\left[ \frac{\mu (\lambda +\mu )}{\alpha (\mu -\alpha )} \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{Q_1}\right) -\frac{\alpha (\lambda +\mu )}{\mu (\mu -\alpha )}\left( 1-\left( \frac{\lambda }{\lambda +\mu }\right) ^{Q_1}\right) \right] \\{} & {} \quad +R_1\left( \frac{\lambda }{\alpha }\right) \left( 1-\left( \frac{\lambda }{\lambda +\alpha }\right) ^{R_1} \right) \frac{\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \quad -\left( \frac{\alpha }{\lambda }\right) \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \quad \times \left[ \frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1+1}-(Q_2-Q_1-R_1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\right] \\{} & {} \quad -\frac{(Q_2-Q_1-R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1}-(Q_2-Q_1-R_1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1}+1}{(1-\frac{\lambda }{\lambda +\alpha })^2} \\{} & {} \quad \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \quad -\left( \frac{\lambda }{\lambda +\alpha }\right) \frac{(R_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1+1}-R_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{R_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} \quad \times \frac{\frac{\mu (\lambda +\mu )}{\lambda (\mu -\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] } \\{} & {} \quad +\left( \frac{\alpha }{\mu -\alpha } \right) \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_1}+\frac{\lambda }{\lambda +\mu }}{(1-\frac{\lambda }{\lambda +\mu })^2}\\{} & {} \quad -\left( \frac{\mu (\lambda +\mu )}{(\mu -\alpha )(\lambda +\alpha )}\right) \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2} \\{} & {} \quad -\left( \frac{\lambda }{\lambda +\alpha } \right) \frac{(Q_1-1)\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+1}-Q_1\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1}+\frac{\lambda }{\lambda +\alpha }}{(1-\frac{\lambda }{\lambda +\alpha })^2}\\{} & {} \quad \times \left[ \frac{(\lambda +\mu )(\lambda +\alpha )}{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-Q_1-R_1-1} + \frac{\mu \alpha }{\lambda (\lambda +\alpha +\mu )}\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1} \right] \\{} & {} \quad \left. \times \frac{\frac{\mu (\lambda +\mu )^2}{\lambda (\mu -\alpha )(\lambda +\mu +\alpha )}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \left( 1-\left( \frac{\lambda +\alpha }{\lambda +\mu }\right) ^{Q_1}\right) }{1-\frac{(\lambda +\mu )^2}{\lambda (\lambda +\mu +\alpha )^2} \left[ (\lambda +\alpha )\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_2-1} + \frac{\mu \alpha }{\lambda +\mu }\left( \frac{\lambda }{\lambda +\mu } \right) ^{Q_2-Q_1-R_1-1}\left( \frac{\lambda }{\lambda +\alpha } \right) ^{Q_1+R_1} \right] }\right] \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shourabizadeh, H., Kundakcioglu, O.E., Bozkir, C.D.C. et al. Healthcare inventory management in the presence of supply disruptions and a reliable secondary supplier. Ann Oper Res 331, 1149–1206 (2023). https://doi.org/10.1007/s10479-023-05620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05620-y

Keywords

Navigation