Skip to main content

Advertisement

Log in

A decision support system based on an artificial multiple intelligence system for vegetable crop land allocation problem

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This research focuses on the development of a novel artificial multiple intelligence system (AMIS), which is more flexible and effective than existing techniques for determining vegetable crop land allocation. Eight intelligence boxes (IBs) have been newly designed to serve as AMIS improvement tools presented in this study. Furthermore, a novel formula has been developed to efficiently select the appropriate IB for various types of problems. The developed method will be incorporated into a vegetable land allocation decision support system. The decision-making of the planning about land allocation for crops, including what to grow and what is in demand during specific periods, was performed while considering important factors such as production yield, crop planting and harvesting time, vegetable price fluctuations, and plant incompatibility, leading to a sustainable production system and achieving the highest prices and annual income. Moreover, the developed vegetable crop land allocation models yield the similarity of the average profit per area, so farmers could plan their crops accordingly. To solve the problem, a mathematical model was proposed to solve a small-sized problem, while a novel metaheuristic called the Artificial Multiple Intelligence System (AMIS) was applied to solve larger-sized problems. The computational results revealed that AMIS outperformed all other traditional methods used for comparison in this research. The solution of AMIS was higher in quality than traditional methods such as Differential Evolution (DE), Multi-Agent Simulated Quenching (MASQ), and Genetic Algorithm (GA) by 21.78, 16.38, and 22.79%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi Malakot, R., Sahraeian, R., & Hosseini, S. M. H. (2022). Optimizing the sales level of perishable goods in a two-echelon green supply chain under uncertainty in manufacturing cost and price. Journal of Industrial and Production Engineering, 39(8), 581–596. https://doi.org/10.1080/21681015.2022.2107097

    Article  Google Scholar 

  • Alamelu, R., Jayanthi, M., Dinesh, S., Nalini, R., Shobhana, N., & Amudha, R. (2023). Sustainable supply chain and circular economy ingenuities in small manufacturing firms-a stimulus for sustainable development. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.236

  • Alcalde-González, V., Mozo, A. G., & Bustos, A. V. (2021). No clean rooms, no hotel business: Subversion tactics in Las Kellys’ struggle for dignity in hotel housekeeping. Annals of Tourism Research, 91, 103315. https://doi.org/10.1016/j.annals.2021.103315

    Article  Google Scholar 

  • Alfandari, L., Lemalade, J.-L., Nagih, A., & Plateau, G. (2011). A mip flow model for crop-rotation planning in a context of forest sustainable development. Annals of Operations Research, 190, 149–164. https://doi.org/10.1007/s10479-009-0553-0

    Article  Google Scholar 

  • Ara, I., Turner, L., Harrison, M. T., Monjardino, M., DeVoil, P., & Rodriguez, D. (2021). Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agricultural Water Management, 257, 107161. https://doi.org/10.1016/j.agwat.2021.107161

    Article  Google Scholar 

  • Avci, M. (2023). An effective iterated local search algorithm for the distributed no-wait flowshop scheduling problem. Engineering Applications of Artificial Intelligence, 120, 105921. https://doi.org/10.1016/j.engappai.2023.105921

    Article  Google Scholar 

  • Bannerjee, G., Sarkar, U., Das, S., & Ghosh, I. (2018). Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, 7, 1–6.

    Google Scholar 

  • Basile, D., D’Adamo, I., Goretti, V., & Rosa, P. (2023). Digitalizing Circular Economy through Blockchains: The Blockchain Circular Economy Index. Journal of Industrial and Production Engineering. https://doi.org/10.1080/21681015.2023.2173317

  • Bocken, N. M., De Pauw, I., Bakker, C., & Van Der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308–320. https://doi.org/10.1080/21681015.2016.1172124

    Article  Google Scholar 

  • Boonyanam, N. (2018). Agricultural zoning and policy conflict: Thailand’s experience. In Land use-assessing the past, envisioning the future. IntechOpen. https://doi.org/10.5772/intechopen.80262

  • Brazil, C. K., Pottorff, T. A., Miller, M., & Rys, M. J. (2023). Using the rapid upper limb assessment to examine the effect of the new hotel housekeeping California standard. Applied Ergonomics, 106, 103868. https://doi.org/10.1016/j.apergo.2022.103868

    Article  Google Scholar 

  • Carletto, C., Savastano, S., & Zezza, A. (2013). Fact or artifact: The impact of measurement errors on the farm size–productivity relationship. Journal of Development Economics, 103, 254–261. https://doi.org/10.1016/j.jdeveco.2013.03.004

    Article  Google Scholar 

  • Chetty, S., & Adewumi, A. O. (2013). Comparison study of swarm intelligence techniques for the annual crop planning problem. IEEE Transactions on Evolutionary Computation, 18, 258–268. https://doi.org/10.1109/TEVC.2013.2256427

    Article  Google Scholar 

  • Dong, D., Tukker, A., Steubing, B., Van Oers, L., Rechberger, H., Aguilar-Hernandez, G. A., Li, H., & Van der Voet, E. (2022). Assessing China’s potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and “Zero waste” policies. Waste Management, 144, 454–467. https://doi.org/10.1016/j.wasman.2022.04.006

    Article  Google Scholar 

  • Dos Santos, L. M. R., Costa, A. M., Arenales, M. N., & Santos, R. H. S. (2010). Sustainable vegetable crop supply problem. European Journal of Operational Research, 204, 639–647. https://doi.org/10.1016/j.ejor.2009.11.026

    Article  Google Scholar 

  • Drake, J. H., Kheiri, A., Ozcan, E., & Burke, E. K. (2020). Recent advances in selection¨ hyper-heuristics. European Journal of Operational Research, 285, 405–428. https://doi.org/10.1016/j.ejor.2019.07.073

    Article  Google Scholar 

  • Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9, 4377–4383. https://doi.org/10.48084/etasr.2756

    Article  Google Scholar 

  • El-Nazer, T., & McCarl, B. A. (1986). The choice of crop rotation: A modeling approach and case study. American Journal of Agricultural Economics, 68, 127–136. https://doi.org/10.2307/1241657

    Article  Google Scholar 

  • Etherington, D. M., & Matthews, P. J. (1983). Approaches to the economic evaluation of agroforestry farming systems. Agroforestry Systems, 1, 347–360. https://doi.org/10.1016/j.ejor.2009.11.026

    Article  Google Scholar 

  • Fan, H., Xiong, H., & Goh, M. (2021). Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints. Computers & Operations Research, 134, 105401. https://doi.org/10.1016/j.cor.2021.105401

    Article  Google Scholar 

  • FAO, (2002). The State of Food Insecurity 2002. Food Insecurity: When People Must Live with Hunger and Fear Starvation. Rome (Italy): Food and Agriculture Organization (FAO), 2002. https://wfp.sharepoint.com/sites/LRCDissemination/Catalogue/Docs/ENGLISH/REFe%20052%202002.pdf

  • Fernando, Y., Halili, M., Tseng, M. L., Tseng, J. W., & Lim, M. K. (2022). Sustainable social supply chain practices and firm social performance: Framework and empirical evidence. Sustainable Production and Consumption, 32, 160–172. https://doi.org/10.1016/j.spc.2022.04.020

    Article  Google Scholar 

  • Folberth, C., Khabarov, N., Balkovič, J., Skalský, R., Visconti, P., Ciais, P., Janssens, I. A., Peñuelas, J., & Obersteiner, M. (2020). The global cropland-sparing potential of high-yield farming. Nature Sustainability, 3, 281–289. https://doi.org/10.1038/s41893-020-0505-x

    Article  Google Scholar 

  • Forrester, R. J., & Rodriguez, M. (2018). An integer programming approach to crop rotation planning at an organic farm. The UMAP Journal, 39(1), 5–25.

  • Gardner, H. E. (2011). Frames of mind: The theory of multiple intelligences. Hachette.

  • Gong, X., Zhang, H., Ren, C., Sun, D., & Yang, J. (2020). Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agricultural Water Management, 239, 106264. https://doi.org/10.1016/j.agwat.2020.106264

    Article  Google Scholar 

  • Hallioui, A., Herrou, B., Santos, R. S., Katina, P. F., & Egbue, O. (2022). Systems-based approach to contemporary business management: An enabler of business sustainability in a context of industry 4.0, circular economy, competitiveness and diverse stakeholders. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2022.133819.

  • Haneveld, W. K., & Stegeman, A. W. (2005). Crop succession requirements in agricultural production planning. European Journal of Operational Research, 166, 406–429. https://doi.org/10.1016/j.ejor.2004.03.009

    Article  Google Scholar 

  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267, 66–73. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  • Jain, S., Ramesh, D., Trivedi, M. C., & Edla, D. R. (2023). Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production. Agricultural Water Management, 279, 108181. https://doi.org/10.1016/j.agwat.2023.108181

    Article  Google Scholar 

  • Jiang, S., Tian, H., Wang, Y., Jin, L., Rong, J., Kang, S., Gao, D., Li, H., Liu, J., & Liu, Z. (2023). Optimization of source pencils loading plan with genetic algorithm for gamma irradiation facility. Radiation Physics and Chemistry, 207, 110839. https://doi.org/10.1016/j.radphyschem.2023.110839

    Article  Google Scholar 

  • Jirasirilerd, G., Pitakaso, R., Sethanan, K., Kaewman, S., Sirirak, W., & KosackaOlejnik, M. (2020). Simple assembly line balancing problem type 2 by variable neighborhood strategy adaptive search: A case study garment industry. Journal of Open Innovation: Technology, Market, and Complexity, 6, 21. https://doi.org/10.3390/joitmc6010021

    Article  Google Scholar 

  • Johnson, G., Weinberger, K., & Wu, M. (2008a). The vegetable sector in tropical Asia: Importance, issues and a way ahead. In International symposium on the socioeconomic impact of modern vegetable production technology in tropical Asia 809 (pp. 15–34).

  • Johnson, G. I., Weinberger, K., & Wu, M.-H. (2008b). The vegetable industry in tropical asia: Thailand. An Overview of Production and Trade. https://doi.org/10.17660/ActaHortic.2009.809.1

  • Johnson, L. K., Bloom, J. D., Dunning, R. D., Gunter, C. C., Boyette, M. D., & Creamer, N. G. (2019). Farmer harvest decisions and vegetable loss in primary production. Agricultural Systems, 176, 102672. https://doi.org/10.1016/j.agsy.2019.102672

    Article  Google Scholar 

  • Južnič-Zonta, Ž, Guisasola, A., & Baeza, J. A. (2022). Smart-Plant Decision Support System (SP-DSS): Defining a multi-criteria decision-making framework for the selection of WWTP configurations with resource recovery. Journal of Cleaner Production, 367, 132873. https://doi.org/10.1016/j.jclepro.2022.132873

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680. https://doi.org/10.1126/science.220.4598.67

    Article  Google Scholar 

  • Lee, C. H., Wu, K. J., & Tseng, M. L. (2018). Resource management practice through eco-innovation toward sustainable development using qualitative information and quantitative data. Journal of Cleaner Production, 202, 120–129. https://doi.org/10.1016/j.jclepro.2018.08.058

    Article  Google Scholar 

  • Lee, Y. H., Golinska-Dawson, P., & Wu, J. Z. (2016). Mathematical models for supply chain management. Mathematical Problems in Engineering, 2016, 6167290. https://doi.org/10.1155/2016/6167290

    Article  Google Scholar 

  • Lemeilleur, S., & Codron, J. M. (2011). Marketing cooperative vs. commission agent: The Turkish dilemma on the modern fresh fruit and vegetable market. Food Policy, 36(2), 272–279. https://doi.org/10.1016/j.foodpol.2010.11.024

    Article  Google Scholar 

  • Li, M., Sun, H., Liu, D., Singh, V. P., & Fu, Q. (2021). Multi-scale modeling for irrigation water and cropland resources allocation considering uncertainties in water supply and demand. Agricultural Water Management, 246, 106687. https://doi.org/10.1016/j.agwat.2020.106687

    Article  Google Scholar 

  • Lin, C.-C., Deng, D.-J., Kang, J.-R., & Liu, W.-Y. (2020). A dynamical simplified swarm optimization algorithm for the multiobjective annual crop planning problem conserving groundwater for sustainability. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2020.3029258

    Article  Google Scholar 

  • Lu, Z., Martínez-Gavara, A., Hao, J. K., & Lai, X. (2023). Solution-based tabu search for the capacitated dispersion problem. Expert Systems with Applications, 119856.

  • Luo, W., Ye, R., Wan, H., Cai, S., Fang, B., & Zhang, D. (2022). Improving local search algorithms via probabilistic configuration checking. In Proceedings of the AAAI conference on artificial intelligence (Vol. 36, No. 9, pp. 10283–10290). https://doi.org/10.1609/aaai.v36i9.21269

  • Mao, J.-y., Pan, Q.-k., Miao, Z.-h., & Gao, L. (2020). An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance. Expert Systems with Applications, 114495. https://doi.org/10.1016/j.eswa.2020.114495

  • Mendoza, J. M. F., Gallego-Schmid, A., Velenturf, A. P., Jensen, P. D., & Ibarra, D. (2022). Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities. Renewable and Sustainable Energy Reviews, 163, 112523. https://doi.org/10.1016/j.rser.2022.112523

    Article  Google Scholar 

  • Mladenović, N., Todosijević, R., Urošević, D., & Ratli, M. (2022). Solving the capacitated dispersion problem with variable neighborhood search approaches: From basic to skewed vns. Computers & Operations Research, 139, 105622. https://doi.org/10.1016/j.cor.2021.105622

    Article  Google Scholar 

  • Mohammadi, M., Rashidi, M., Yu, Y., & Samali, B. (2023). Integration of TLS-derived Bridge Information Modeling (Br IM) with a Decision Support System (DSS) for digital twinning and asset management of bridge infrastructures. Computers in Industry, 147, 103881. https://doi.org/10.1016/j.compind.2023.103881

    Article  Google Scholar 

  • Mpanga, I. K., Schuch, U. K., & Schalau, J. (2021). Adaptation of resilient regenerative agricultural practices by small-scale growers towards sustainable food production in north-central Arizona. Current Research in Environmental Sustainability, 3, 100067. https://doi.org/10.1016/j.crsust.2021.100067

    Article  Google Scholar 

  • Nanthapodej, R., Liu, C.-H., Nitisiri, K., & Pattanapairoj, S. (2021). Variable neighborhood strategy adaptive search to solve parallel-machine scheduling to minimize energy consumption while considering job priority and control makespan. Applied Sciences, 11, 5311. https://doi.org/10.3390/app11115311

    Article  Google Scholar 

  • Nanthasamroeng, N. (2012). Location analysis for emergency medical service vehicle in sub district area. Industrial Engineering and Management Systems, 11, 339–345. https://doi.org/10.7232/iems.2012.11.4.339

    Article  Google Scholar 

  • Negash, Y. T., Sarmiento, L. S. C., Tseng, M. L., Lim, M. K., & Ali, M. H. (2021). Engagement factors for household waste sorting in Ecuador: Improving perceived convenience and environmental attitudes enhances waste sorting capacity. Resources, Conservation and Recycling, 175, 105893. https://doi.org/10.1016/j.resconrec.2021.105893

    Article  Google Scholar 

  • Nkonya, E. (2004). Strategies for sustainable land management and poverty reduction in Uganda (Vol. 133). Intl Food Policy Res Inst.

  • Olmez, O. B., Gultekin, C., Balcik, B., Ekici, A., & Özener, O. Ö. (2022). A variable neighborhood search based matheuristic for a waste cooking oil collection network design problem. European Journal of Operational Research, 302(1), 187–202. https://doi.org/10.1016/j.ejor.2021.12.018

    Article  Google Scholar 

  • Pawlewski, P., Golinska, P., Fertsch, M., Trujillo, J. A., & Pasek, Z. J. (2009). Multiagent approach for supply chain integration by distributed production planning, scheduling and control system. In International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008) (pp. 29–37). Springer. https://doi.org/10.1007/978-3-540-85863-8_5

  • Pérez-Blanco, C. D., Gil-García, L., & Saiz-Santiago, P. (2021). An actionable hydroeconomic Decision Support System for the assessment of water reallocations in irrigated agriculture. A study of minimum environmental flows in the Douro River Basin. Spain. Journal of Environmental Management, 298, 113432. https://doi.org/10.1016/j.jenvman.2021.113432

    Article  Google Scholar 

  • Piotrowski, A. P., Napiorkowski, J. J., & Piotrowska, A. E. (2023). Particle swarm optimization or differential evolution—A comparison. Engineering Applications of Artificial Intelligence, 121, 106008. https://doi.org/10.1016/j.engappai.2023.106008

    Article  Google Scholar 

  • Pitakaso, R., Almeder, C., Doerner, K. F., & Hartl, R. F. (2007). A max-min ant system for unconstrained multi-level lot-sizing problems. Computers & Operations Research, 34(9), 2533–2552.

    Article  Google Scholar 

  • Pitakaso, R., Sethanan, K., & Theeraviriya, C. (2020). Variable neighborhood strategy adaptive search for solving green 2-echelon location routing problem. Computers and Electronics in Agriculture, 173, 105406. https://doi.org/10.1016/j.compag.2020.105406

    Article  Google Scholar 

  • Pitakaso, R., Sethanan, K., Jirasirilerd, G., Golinska-Dawson, P. (2021). A novel variable neighborhood strategy adaptive search for salbp-2 problem with a limit on the number of machine’s types. Annals of Operations Research, 324, 1501–1525. https://doi.org/10.1007/s10479-021-04015-1

  • Place, F., & Otsuka, K. (2002). Land tenure systems and their impacts on agricultural investments and productivity in uganda. Journal of Development Studies, 38, 105–128. https://doi.org/10.1080/00220380412331322601

    Article  Google Scholar 

  • Quan, B., Li, S., & Wu, K. J. (2023). A hybrid metaheuristic algorithm to achieve sustainable production: involving employee characteristics in the job-shop matching problem. Journal of Industrial and Production Engineering. https://doi.org/10.1080/21681015.2023.2184426

  • Rainwater, C., Geunes, J., & Romeijn, H. E. (2009). The generalized assignment problem with flexible jobs. Discrete Applied Mathematics, 157, 49–67. https://doi.org/10.1016/j.dam.2008.04.017

    Article  Google Scholar 

  • Rajni, J., Malangmeih, L., Raju, S., Srivastava, S., Kingsly, I., Kaur, A., et al. (2018). Optimization techniques for crop planning: A review. Indian Journal of Agricultural Sciences, 88, 1826–1835.

    Article  Google Scholar 

  • Rath, A., & Swain, P. C. (2018). Optimal allocation of agricultural land for crop planning in hirakud canal command area using swarm intelligence techniques. ISH Journal of Hydraulic Engineering, 27(1), 38–50. https://doi.org/10.1080/09715010.2018.1508375

    Article  Google Scholar 

  • Roche, J., Plantegenest, M., Larroudé, P., Thibord, J. B., & Poggi, S. (2023). A decision support system based on Bayesian modelling for pest management: Application to wireworm risk assessment in maize fields. Smart Agricultural Technology, 4, 100162. https://doi.org/10.1016/j.atech.2022.100162

    Article  Google Scholar 

  • Ruoff, E. (2015). Optimizing crop land allocation for smallholder farmers in central Uganda (Ph.D. thesis, Masters thesis, Wageningen University and Research Centre).

  • Sangkaphet, P., Pitakaso, R., Sethanan, K., Nanthasamroeng, N., Pranet, K., Khonjun, S., Srichok, T., Kaewman, S., & Kaewta, C. (2022). A multiobjective variable neighborhood strategy adaptive search to optimize the dynamic EMS location-allocation problem. Computation, 10(6), 103. https://doi.org/10.3390/computation10060103

    Article  Google Scholar 

  • Saranya, S., & Amudha, T. (2016). Crop planning optimization research—A detailed investigation. In 2016 IEEE international conference on advances in computer applications (ICACA) (pp. 202–208). IEEE. https://doi.org/10.1109/ICACA.2016.7887951

  • Sarker, R. A., Talukdar, S., & Haque, A. A. (1997). Determination of optimum crop mix for crop cultivation in bangladesh. Applied Mathematical Modelling, 21, 621–632.

    Article  Google Scholar 

  • Sereshti, N., & Bijari, M. (2013). Profit maximization in simultaneous lot-sizing and scheduling problem. Applied Mathematical Modelling, 37, 9516–9523. https://doi.org/10.1016/j.apm.2013.05.004

    Article  Google Scholar 

  • Sethanan, K., & Pitakaso, R. (2016). Improved differential evolution algorithms for solving generalized assignment problem. Expert Systems with Applications, 45, 450–459. https://doi.org/10.1016/j.eswa.2015.10.009

  • Shahparvari, S., Hassanizadeh, B., Mohammadi, A., Kiani, B., Lau, K. H., Chhetri, P., & Abbasi, B. (2022). A decision support system for prioritised COVID-19 two-dosage vaccination allocation and distribution. Transportation Research Part E: Logistics and Transportation Review, 159, 102598. https://doi.org/10.1016/j.tre.2021.102598

    Article  Google Scholar 

  • Shang, Z., Zhao, S., Hao, J.-K., Yang, X., & Ma, F. (2019). Multiple phase Tabu search for bipartite Boolean quadratic programming with partitioned variables. Computers & Operations Research, 102, 141–149. https://doi.org/10.1016/j.cor.2018.10.009

    Article  Google Scholar 

  • Talari, G., Cummins, E., McNamara, C., & O’Brien, J. (2022). State of the art review of Big Data and web-based Decision Support Systems (DSS) for food safety risk assessment with respect to climate change. Trends in Food Science & Technology, 126, 192–204. https://doi.org/10.1016/j.tifs.2021.08.032

    Article  Google Scholar 

  • Thilagavathi, N., & Amudha, T. (2019). A novel methodology for optimal land allocation for agricultural crops using social spider algorithm. PeerJ, 7, e7559. https://doi.org/10.7717/peerj.7559

    Article  Google Scholar 

  • Tran, D., Vu, H. T., & Goto, D. (2022). Agricultural land consolidation, labor allocation and land productivity: A case study of plot exchange policy in Vietnam. Economic Analysis and Policy, 73, 455–473. https://doi.org/10.1016/j.eap.2021.11.017

    Article  Google Scholar 

  • Tsao, Y. C., Zhang, Q., Zhang, X., & Vu, T. L. (2021). Supply chain network design for perishable products under trade credit. Journal of Industrial and Production Engineering, 38(6), 466–474. https://doi.org/10.1080/21681015.2021.1937722

    Article  Google Scholar 

  • Tseng, M. L., Ardaniah, V., Negash, Y. T., & Lin, C. W. (2022). Building a hierarchical sustainable development transition model in qualitative information approach: Electric utility industry in Indonesia. Cleaner and Responsible Consumption, 5, 100060. https://doi.org/10.1016/j.clrc.2022.100060

    Article  Google Scholar 

  • Van Asten, P. J., Kaaria, S., Fermont, A., & Delve, R. J. (2009). Challenges and lessons when using farmer knowledge in agricultural research and development projects in Africa. Experimental Agriculture, 45, 1. https://doi.org/10.1017/S0014479708006984

    Article  Google Scholar 

  • Wankhade, M., & Lunge, H. (2012). Allocation of agricultural land to the major crops of saline track by linear programming approach: A case study. International Journal of Scientific & Technology Research, 1, 21–25.

    Google Scholar 

  • Wehner, M., Kleidorfer, I., Whittle, I., Bischof, D., Bockreis, A., Insam, H., Mueller, W., & Hupfauf, S. (2023). Decentralised system for demand-oriented collection of food waste-assessment of biomethane potential, pathogen development and microbial community structure. Bioresource Technology, 376, 128894. https://doi.org/10.1016/j.biortech.2023.128894

    Article  Google Scholar 

  • Wenkel, K. O., Berg, M., Mirschel, W., Wieland, R., Nendel, C., & Köstner, B. (2013). LandCaRe DSS–An interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies. Journal of Environmental Management, 127, S168–S183. https://doi.org/10.1016/j.jenvman.2013.02.051

    Article  Google Scholar 

  • Wongprawmas, R., Canavari, M., & Waisarayutt, C. (2015). A multi-stakeholder perspective on the adoption of good agricultural practices in the Thai fresh produce industry. British Food Journal. https://doi.org/10.1108/BFJ-08-2014-0300

    Article  Google Scholar 

  • Worasan, K., Sethanan, K., Pitakaso, R., Moonsri, K., & Nitisiri, K. (2020). Hybrid particle swarm optimization and neighborhood strategy search for scheduling machines and equipment and routing of tractors in sugarcane field preparation. Computers and Electronics in Agriculture, 178, 105733. https://doi.org/10.1016/j.compag.2020.105733

    Article  Google Scholar 

  • Wu, H., & Gao, Y. (2023). An ant colony optimization based on local search for the vehicle routing problem with simultaneous pickup-delivery and time window. Applied Soft Computing, 139, 110203. https://doi.org/10.1016/j.asoc.2023.110203

    Article  Google Scholar 

  • Wu, K. J., Hou, W., Wang, Q., Yu, R., & Tseng, M. L. (2022). Assessing city’s performance-resource improvement in China: A sustainable circular economy framework approach. Environmental Impact Assessment Review, 96, 106833. https://doi.org/10.1016/j.eiar.2022.106833

    Article  Google Scholar 

  • Xu, H., Wang, X., Qu, Q., Zhai, J., Song, Y., Qiao, L., Liu, G., & Xue, S. (2020). Cropland abandonment altered grassland ecosystem carbon storage and allocation and soil carbon stability in the loess hilly region, china. Land Degradation & Development, 31, 1001–1013. https://doi.org/10.1002/ldr.3513

    Article  Google Scholar 

  • Yagiura, M., Iwasaki, S., Ibaraki, T., & Glover, F. (2004). A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem. Discrete Optimization, 1, 87–98. https://doi.org/10.1016/j.disopt.2004.03.005

    Article  Google Scholar 

  • Zhang, X., Liu, Q., & Qu, Y. (2023). An adaptive differential evolution algorithm with population size reduction strategy for unconstrained optimization problem. Applied Soft Computing, 138, 110209. https://doi.org/10.1016/j.asoc.2023.110209

    Article  Google Scholar 

  • Zhou, Y., Liu, X., Hu, S., Wang, Y., & Yin, M. (2022). Combining max–min ant system with effective local search for solving the maximum set k-covering problem. Knowledge-Based Systems, 239, 108000. https://doi.org/10.1016/j.knosys.2021.108000

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research and Graduate Studies KhonKaen University, Thailand, Faculty of Engineering, Khon Kaen University and the Department of Industrial Engineering, Ubon Ratchathani University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchana Sethanan.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitakaso, R., Sethanan, K., Tan, K.H. et al. A decision support system based on an artificial multiple intelligence system for vegetable crop land allocation problem. Ann Oper Res (2023). https://doi.org/10.1007/s10479-023-05398-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05398-z

Keywords

Navigation