Skip to main content
Log in

Design of a class-based order picking system with stochastic demands and priority consideration

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

An MIAPP-NALT system is an order picking system in which cases are picked at multiple in-the-aisle pick positions (MIAPP) and storage and retrieval operations are performed by a narrow aisle lift truck (NALT). In this paper, the operation of such a system involving three classes of stock keeping units with random demands for storage and retrieval operations is modeled as an M/G/1 queue, where “customers” are storage and retrieval requests, the “server” is the NALT, and retrieval requests have non-preemptive priority over storage requests. Our goal is to explore a methodology and solution method to obtain the optimal layout design of a class-based MIAPP-NALT system with stochastic demands and priority service. To this end, an operation time model of the system is developed and the first two moments for the operation time are derived. To overcome the challenge in finding the desired optimal layout, a near-optimal layout obtained via a heuristic approach is obtained at first and is improved afterwards. Based on the optimal layout, some valuable queueing results demonstrate the benefit of using a priority-based discipline. Moreover, some useful insights regarding the selection of dedicated versus random storage policies are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bozer, Y. A., & Cho, M. (2005). Throughput performance of automated storage/retrieval systems under stochastic demand. IIE Transactions, 37(4), 367–378.

    Article  Google Scholar 

  • Bozer, Y. A., & White, J. A. (1990). Design and performance models for end-of-aisle order picking systems. Management Science, 36(7), 852–866.

    Article  Google Scholar 

  • Cai, X., & Heraand Liu, Y. (2014). Modeling and evaluating the AVS/RS with tier-to-tier vehicles using a semi-open queueing network. IIE Transactions, 46(9), 905–927.

    Article  Google Scholar 

  • Cai, X., Heragu, S. S., & Liu, Y. (2013). Handbook of stochastic models and analysis of manufacturing system operations. Springer.

    Google Scholar 

  • Cox, D. R., & Smith, W. L. (1961). Queues (pp. 76–90). Methuen and Co Ltd.

    Google Scholar 

  • Do, N. A. D., Nielsen, I. E., Chen, G., & Nielsen, P. (2016). A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal. Annals of Operations Research, 242, 285–301.

    Article  Google Scholar 

  • Drury, J. (1988). Towards more efficient order picking, IMM monograph No. 1. Report, The Institute of Materials Management, Cranfield, U.K.

  • Fragapane, G., Ivanov, D., Peron, M., Sgarbossa, F., & Strandhagen, J. O. (2022). Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics. Annals of Operations Research, 308, 125–143.

    Article  Google Scholar 

  • Francis, R. L., McGinnis, L. F., Jr., & White, J. A. (1992). Facility layout and location: An analytical approach (2nd ed.). Prentice-Hall.

    Google Scholar 

  • Fukunari, M., & Malmborg, C. J. (2009). A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems. European Journal of Operational Research, 193(1), 152–167.

    Article  Google Scholar 

  • Hale, T. S., Huq, F., & Hipkin, I. (2015). An improved facility layout construction method. International Journal of Production Research, 50(15), 4271–4278.

    Article  Google Scholar 

  • Heragu, S. S., Cai, X., Krishnamurthy, A., & Malmborg, C. J. (2011). Analytical models for analysis of automated warehouse material handling systems. International Journal of Production Research, 49(22), 6833–6861.

    Article  Google Scholar 

  • Hur, S., Lee, Y. H., Lim, S. Y., & Lee, M. H. (2004). A performance estimation model for AS/RS by M/G/1 queuing system. Computers & Industrial Engineering, 46(2), 233–241.

    Article  Google Scholar 

  • Hur, S., & Nam, J. (2006). Performance analysis of automatic storage/retrieval systems by stochastic modelling. International Journal of Production Research, 44(8), 1613–1626.

    Article  Google Scholar 

  • Kuo, P., Krishnamurthy, A., & Malmborg, C. J. (2007). Design models for unit load storage and retrieval systems using autonomous vehicle technology and resource conserving storage and dwell point policies. Applied Mathematical Modelling, 31(10), 2332–2346.

    Article  Google Scholar 

  • Larson, R. C., & Odoni, A. R. (1981). Urban operations research (pp. 138–139). Prentice-Hall.

    Google Scholar 

  • Lee, H. F. (1997). Performance analysis for automated storage/retrieval systems. IIE Transactions, 29(1), 15–28.

    Article  Google Scholar 

  • Liu, J., Liao, H., & White, J. A. (2021a). Queueing analysis of the replenishment of multiple in-the-aisle pick positions. IISE Transactions, 53(1), 1–20.

    Article  Google Scholar 

  • Liu, J., Liao, H., & White, J. A. (2021b). Stochastic analysis of an automated storage and retrieval system with multiple in-the-aisle pick positions. Naval Research Logistics, 68(4), 454–470.

    Article  Google Scholar 

  • Malmborg, C. J. (2002). Conceptualizing tools for autonomous vehicle storage and retrieval systems. International Journal of Production Research, 40(8), 1807–1822.

    Article  Google Scholar 

  • Malmborg, C. J. (2003). Interleaving dynamics in autonomous vehicle storage and retrieval systems. International Journal of Production Research, 41(5), 1057–1069.

    Article  Google Scholar 

  • Manzini, R., Accorsi, R., Baruffaldi, G., Cennerazzo, T., & Gamberi, M. (2015). Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system. International Journal of Production Research, 54(14), 4286–4304.

    Article  Google Scholar 

  • Miyagawa, M. (2010). Distributions of rectilinear deviation distance to visit a facility. European Journal of Operational Research, 205(1), 106–112.

    Article  Google Scholar 

  • Öztürkoǧlu, O., Gue, K. R., & Meller, R. D. (2014). A constructive aisle design formulation for unit-load warehouses with multiple pickup and deposit points. European Journal of Operational Research, 236(1), 382–394.

    Article  Google Scholar 

  • Parikh, P. J., & Meller, R. D. (2010). A travel-time model for a person-onboard order picking system. European Journal of Operational Research, 200(2), 385–394.

    Article  Google Scholar 

  • Park, B. C., Frazelle, E. H., & White, J. A. (1999). Buffer sizing models for end-of-aisle order picking systems. IIE Transactions, 31(1), 31–38.

    Article  Google Scholar 

  • Ramtin, F., & Pazour, J. A. (2014). Analytical models for an automated storage and retrieval system with multiple in-the-aisle pick positions. IIE Transactions, 46(9), 968–986.

    Article  Google Scholar 

  • Ramtin, F., & Pazour, J. A. (2015). Production allocation problem for an AS/RS with multiple in-the-aisle pick positions. IIE Transactions, 47(1), 1–18.

    Google Scholar 

  • Roy, D., Krishnamurthy, A., Heragu, S., & Malmborg, C. J. (2015). Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems. European Journal of Operational Research, 242(1), 72–87.

    Article  Google Scholar 

  • Roy, D., Nigam, S., De Koster, R., Adan, I., & Resing, J. (2019). Robot-storage zone assignment strategies in mobile fulfillment systems. Transportation Research, Part E: Logistics and Transportation Review, E122, 119–142.

    Article  Google Scholar 

  • Schleyer, M., & Gue, K. R. (2012). Throughput time distribution analysis for a one-block warehouse. Transportation Research, Part E: Logistics and Transportation Review, E48, 652–666.

    Article  Google Scholar 

  • Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing theory (5th ed., pp. 255–289). John Wiley & Sons Inc.

    Google Scholar 

  • Smith, J. M. (2015). Optimal workload allocation in closed queueing networks with state dependent queues. Annals of Operations Research, 231, 157–183.

    Article  Google Scholar 

  • Tamjidy, M., Paslar, S., Baharudin, B. T. H. T., Hong, T. S., & Ariffin, M. K. A. (2015). Biogeography based optimization (BBO) algorithm to minimise non-productive time during hole-making process. International Journal of Production Research, 53(6), 1880–1894.

    Article  Google Scholar 

  • Vlasiou, M., Adan, I. J. B. F., & Wessels, J. (2004). A Lindley-type equation arising from a carousel problem. Journal of Applied Probability, 41(4), 1171–1181.

    Article  Google Scholar 

  • Wang, K., Yang, Y., & Li, R. (2020). Travel time models for the rack-moving mobile robot system. International Journal of Production Research, 58(14), 4367–4385.

    Article  Google Scholar 

  • Zaerpour, N., Yu, Y., & De Koster, R. (2017a). Response time analysis of a live-cube compact storage system with two storage classes. IISE Transactions, 49(5), 461–480.

    Article  Google Scholar 

  • Zaerpour, N., Yu, Y., & De Koster, R. (2017b). Optimal two-class-based storage in a live-cube compact storage system. IISE Transactions, 49(7), 653–668.

    Article  Google Scholar 

  • Zhang, L., Krishnamurthy, A., Malmborg, C. J., & Heragu, S. (2009). Variance-based approximation of transaction waiting times in autonomous vehicle storage and retrieval systems. European Journal of Industrial Engineering, 3(2), 146–169.

    Article  Google Scholar 

  • Zou, B., Gong, Y., Xu, X., & Yuan, Z. (2017). Assignment rules in robotic mobile fulfilment systems for online retailers. International Journal of Production Research, 55(20), 6175–6192.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and three reviewers for their comments and suggestions. The first author would also like to acknowledge the support from Natural Science Foundation of Hebei Province (G2022202004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liao.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Key derivations of interested travel times

See Figs. 10 and 11

Fig. 10
figure 10

Layout with three classes of SKUs

Fig. 11
figure 11

Possible travel paths for retrieval operations

.

Appendix A First two moments for vertical travel time

(a) First two moments for vertical travel time for a floor-level storage location to perform a storage operation or retrieval operation

For subclass A1, B1, or C1 SKUs at floor-level storage locations in Fig. 10, regardless of storage or retrieval operation, the fork of the NALT will be lifted from a floor-level location to a random reserve-storage location of subclass A1, B1, or C1, pick up or deposit a pallet there, and lower the forks to a floor-level location. The expression for NALT vertical travel time T is \(T\left( Y \right) = 2Y\), where \(Y\sim {\text{unif}}\left[ {0,b/2} \right]\) with pdf \(f\left( y \right) = \frac{2}{b}\). Then, the first two moments of T can be expressed as:

$$ E\left[ T \right] = \mathop \int \limits_{0}^{{{\text{b}}/2}} t\left( y \right)f\left( y \right)dy = \mathop \int \limits_{0}^{{{\text{b}}/2}} \frac{4y}{b}dy = \frac{b}{2} $$
(A1)
$$ E\left[ {T^{2} } \right] = \mathop \int \limits_{0}^{{{\text{b}}/2}} \left[ {t\left( y \right)} \right]^{2} f\left( y \right)dy = \mathop \int \limits_{0}^{{{\text{b}}/2}} \frac{{8y^{2} }}{b}dy = \frac{{b^{2} }}{3} $$
(A2)

(b) First two moments for vertical travel time for a mezzanine-level storage location to perform a retrieval operation with dedicated storage or to perform a storage operation

For subclass A2, B2, or C2 SKUs at mezzanine-level storage locations, to perform a retrieval operation with dedicated storage or to perform a storage operation with either dedicated storage or random storage, as shown in Fig. 10, the forks of the NALT will be lifted from a floor-level location to a random reserve-storage location of subclass A2, B2, or C2, pick up or deposit a pallet, and, be lowered to the floor-level location. The expression for NALT vertical travel time T is \(T\left( Y \right) = 2Y\), where \(Y\sim {\text{unif}}\left[ {b/2,b} \right]\) with pdf \(f\left( y \right) = \frac{2}{b}\). The first two moments of T are:

$$ E\left[ T \right] = \mathop \int \limits_{b/2}^{b} t\left( y \right)f\left( y \right)dy = \mathop \int \limits_{b/2}^{b} \frac{4y}{b}dy = \frac{3b}{2} $$
(A3)
$$ E\left[ {T^{2} } \right] = \mathop \int \limits_{b/2}^{b} \left[ {t\left( y \right)} \right]^{2} f\left( y \right)dy = \mathop \int \limits_{b/2}^{b} \frac{{8y^{2} }}{b}dy = \frac{{7b^{2} }}{3} $$
(A4)

(c) First two moments for vertical travel time for a mezzanine-level storage location to perform a retrieval operation with random storage

For subclass A2, B2, or C2 SKUs at mezzanine-level storage locations for retrieval operation with random storage in Fig. 10, as depicted by the red line in Fig. 1, to perform a retrieval operation with a random-storage policy, the NALT forks will be raised from a floor-level location to a random reserve-storage location of subclass A2, B2, or C2, pick up a pallet, and be lowered to the floor-level location (before moving horizontally to the appropriate position to access the desired mezzanine location), the forks will be raised to the mezzanine level for placement of the pallet at the deposit point for the pick position, and then the forks will be lowered to the floor-level location. The expression for NALT vertical travel time T is \(T\left( Y \right) = 2Y + b\), where \(Y\sim {\text{unif}}\left[ {b/2,b} \right]\) with pdf \(f\left( y \right) = \frac{2}{b}\). The first two moments of T are:

$$ E\left[ T \right] = \mathop \int \limits_{b/2}^{b} t\left( y \right)f\left( y \right)dy = \mathop \int \limits_{b/2}^{b} \frac{4y + 2b}{b}dy = \frac{5b}{2} $$
(A5)
$$ E\left[ {T^{2} } \right] = \mathop \int \limits_{b/2}^{b} \left[ {t\left( y \right)} \right]^{2} f\left( y \right)dy = \mathop \int \limits_{b/2}^{b} \frac{{2\left( {2y + b} \right)^{2} }}{b}dy = \frac{{19b^{2} }}{3} $$
(A6)

Appendix B: First two moments for horizontal travel time to perform a storage operation

In Fig. 10, for any possible travel path, the NALT travels from a random floor-level location \( X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right] \) within six subclasses A1, A2, B1, B2, C1 and C2 to the input station; then, the NALT travels to another random floor-level location \(X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) within six subclasses A1, A2, B1, B2, C1 and C2. The expression for the NALT horizontal travel time T is \(T\left( {X_{i} , X_{j} } \right) = X_{i} + X_{j}\), where \(X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right]\) and \(X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) with a joint pdf \(f\left( {x_{i} , x_{j} } \right) = f\left( {x_{i} } \right)f\left( {x_{j} } \right) = \frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}\). Then, the first two moments of T can be expressed as:

$$ E\left[ T \right] = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} t\left( {x_{i} , x_{j} } \right)f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{x_{i} + x_{j} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} = \frac{1}{2}\left( {Z_{1} + Z_{2} + Z_{3} + Z_{4} } \right) $$
(A7)
$$ \begin{aligned} E\left[ {T^{2} } \right] =&\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \left[ {t\left( {x_{i} , x_{j} }\right)} \right]^{2} f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} =\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{\left( {x_{i} + x_{j} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)}}dx_{j} dx_{i} \hfill \\ =&\frac{1}{6}\left( 2Z_{1}^{2} + 2Z_{2}^{2} + 2Z_{3}^{2} + 2Z_{4}^{2}+ 2Z_{1} Z_{2} + 3Z_{1} Z_{3} \right.\\&\left.+ 3Z_{1} Z_{4} + 3Z_{2} Z_{3} + 3Z_{2}Z_{4} + 2Z_{3} Z_{4} \right) \hfill \\ \end{aligned}$$
(A8)

Appendix C: First two moments for horizontal travel time to perform a retrieval operation with a dedicated-storage policy

The three travel patterns in Fig. 11 represent possible travel paths in Fig. 10. For horizontal travel with dedicated storage, NALT travel time for travel path from E to F and travel path from F to E are the same, therefore, only one set of first two moments must be derived for each travel pattern in Fig. 11.

Travel pattern (a) with \(Z_{2} \le Z_{3}\)

Because, if travel is from E to F or from F to E, the expression for horizontal travel time T is \(T\left( {X_{i} , X_{j} } \right) = \left| {X_{i} - X_{j} } \right| = X_{j} - X_{i}\), where \( X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right] \) and \(X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) with a joint pdf \(f\left( {x_{i} , x_{j} } \right) = f\left( {x_{i} } \right)f\left( {x_{j} } \right) = \frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}\). The first two moments of T are:

$$ \begin{gathered} E\left[ T \right] = E\left[ T \right] = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} t\left( {x_{i} , x_{j} } \right)f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} \hfill \\ \quad \quad \quad = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{x_{j} - x_{i} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} = \frac{1}{2}\left( {Z_{3} + Z_{4} - Z_{1} - Z_{2} } \right) \hfill \\ \end{gathered} $$
(A9)
$$ \begin{gathered} E\left[ {T^{2} } \right] = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \left[ {t\left( {x_{i} , x_{j} } \right)} \right]^{2} f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{\left( {x_{j} - x_{i} } \right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} \hfill \\ \quad \quad \quad \quad = \frac{1}{6}\left( {2Z_{1}^{2} + 2Z_{2}^{2} + 2Z_{3}^{2} + 2Z_{4}^{2} + 2Z_{1} Z_{2} - 3Z_{1} Z_{3} - 3Z_{1} Z_{4} - 3Z_{2} Z_{3} - 3Z_{2} Z_{4} + 2Z_{3} Z_{4} } \right) \hfill \\ \end{gathered} $$
(A10)

Travel pattern (b) with \(Z_{1} \le Z_{3} \le Z_{2} \le Z_{4}\),

If travel is from E to F or from F to E, the expression for travel time T is

$$ T\left( {X_{i} , X_{j} } \right) = \left| {X_{i} - X_{j} } \right| = \left\{ {\begin{array}{*{20}c} {X_{j} - X_{i} X_{j} \ge X_{i} {\text{Case }}1} \\ {X_{i} - X_{j} X_{j} < X_{i} {\text{Case }}2} \\ \end{array} } \right. $$

where \(X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right]\) and \(X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) with a joint pdf \(f\left( {x_{i} , x_{j} } \right) = f\left( {x_{i} } \right)f\left( {x_{j} } \right) = \frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}\). The expected value of T is:

$$ \begin{aligned} E\left[ T \right] =&\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{{\text{max}}(Z_{3} , x_{i} )}}^{{Z_{4} }} t\left( {x_{i} ,x_{j} } \right)f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} +\mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{x_{i} }} t\left( {x_{i} , x_{j} }\right)f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} \hfill \\=& \mathop \int \limits_{{Z_{1} }}^{{Z_{3} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{x_{j} - x_{i} }}{{\left( {Z_{2}- Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} +\mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{x_{i} }}^{{Z_{4} }} \frac{{x_{j} - x_{i} }}{{\left( {Z_{2}- Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} \\&+\mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{x_{i} }} \frac{{x_{i} - x_{j} }}{{\left( {Z_{2}- Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i}\hfill \\ =& \frac{1}{{6\left( {Z_{2} - Z_{1} }\right)\left( {Z_{4} - Z_{3} } \right)}}\left( 2Z_{2}^{3} -2Z_{3}^{3} + 3Z_{1} Z_{3}^{2} - 3Z_{1} Z_{4}^{2} - 3Z_{1}^{2} Z_{3}+ 3Z_{1}^{2} Z_{4} \right.\\&\left.+ 3Z_{2} Z_{3}^{2} + 3Z_{2} Z_{4}^{2} -3Z_{2}^{2} Z_{3} - 3Z_{2}^{2} Z_{4} \right) \hfill \\\end{aligned} $$
(A11)

For the second moment of T, the formula is the same as the \(E\left[{T}^{2}\right]\) for travel pattern (a) because E[|Xi-Xj|2] = E[(Xi-Xj)2] = E[Xi 2] + E[Xj2]-2E[Xi]E[Xj], so the \(E\left[{T}^{2}\right]\) is:

$$ E\left[ {T^{2} } \right] = \frac{1}{6}\left( {2Z_{1}^{2} + 2Z_{2}^{2} + 2Z_{3}^{2} + 2Z_{4}^{2} + 2Z_{1} Z_{2} - 3Z_{1} Z_{3} - 3Z_{1} Z_{4} - 3Z_{2} Z_{3} - 3Z_{2} Z_{4} + 2Z_{3} Z_{4} } \right) $$
(A12)

Travel pattern (c) with \({\varvec{Z}}_{3} \le {\varvec{Z}}_{1} \le {\varvec{Z}}_{2} \le {\varvec{Z}}_{4}\).

If travel is from E to F or from F to E, the expression for travel time T is

$$ T\left( {X_{i} , X_{j} } \right) = \left| {X_{i} - X_{j} } \right| = \left\{ {\begin{array}{*{20}c} {X_{j} - X_{i} X_{j} \ge X_{i} \quad {\text{Case }}1} \\ {X_{i} - X_{j} X < X_{i} \quad {\text{Case }}2} \\ \end{array} } \right. $$

where \(X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right]\) and \(X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) with a joint pdf \(f\left( {x_{i} , x_{j} } \right) = f\left( {x_{i} } \right)f\left( {x_{j} } \right) = \frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}\). The expected value of T is:

$$ \begin{gathered} E\left[ T \right] = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{x_{i} }}^{{Z_{4} }} t\left( {x_{i} , x_{j} } \right)f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{x_{i} }} t\left( {x_{i} , x_{j} } \right)f\left( {x_{i} , x_{j} } \right)dx_{j} dx_{i} \hfill \\ \quad \quad = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{x_{i} }}^{{Z_{4} }} \frac{{x_{j} - x_{i} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{x_{i} }} \frac{{x_{i} - x_{j} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)}}dx_{j} dx_{i} \hfill \\ \quad \quad = \frac{1}{{6\left( {Z_{4} - Z_{3} } \right)}}\left( {2Z_{1}^{2} + 2Z_{2}^{2} + 3Z_{3}^{2} + 3Z_{4}^{2} + 2Z_{1} Z_{2} - 3Z_{1} Z_{3} - 3Z_{1} Z_{4} - 3Z_{2} Z_{3} - 3Z_{2} Z_{4} } \right) \hfill \\ \end{gathered} $$

For the second moment of T, the formula is the same as the \(E\left[ {T^{2} } \right]\) for travel pattern (a) because E[|Xi-Xj|2] = E[(Xi-Xj)2] = E[Xi 2] + E[Xj2]-2E[Xi]E[Xj], so the \(E\left[ {T^{2} } \right]\) is:

$$ E\left[ {T^{2} } \right] = \frac{1}{6}\left( {2Z_{1}^{2} + 2Z_{2}^{2} + 2Z_{3}^{2} + 2Z_{4}^{2} + 2Z_{1} Z_{2} - 3Z_{1} Z_{3} - 3Z_{1} Z_{4} - 3Z_{2} Z_{3} - 3Z_{2} Z_{4} + 2Z_{3} Z_{4} } \right) $$
(A14)

Appendix D: First two moments for horizontal travel time to perform a retrieval operation with a random-storage policy

Three travel patterns in Fig. 11 are considered. For horizontal travel with random storage, NALT travel time for travel from E to F differs from travel from F to E; therefore, two sets of first two moments are derived for each travel pattern in Fig. 11.

Travel pattern (a) with \(Z_{2} \le Z_{3}\).

For travel from E to F, the expression for travel time T is

$$ T\left( {X, X_{i} , X_{j} } \right) = X - X_{i} + \left| {X_{j} - X} \right| = \left\{ {\begin{array}{*{20}c} {X_{j} - X_{i} X_{j} \ge X {\text{Case }}1} \\ {2X - X_{i} - X_{j} X_{j} < X {\text{Case }}2} \\ \end{array} } \right. $$

where \(X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right]\) and \(X, X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) with a joint pdf \(f\left( {x, x_{i} , x_{j} } \right) = f\left( x \right)f\left( {x_{i} } \right)f\left( {x_{j} } \right) = \frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}\). The first two moments of T are:

$$ \begin{aligned} E\left[ T \right] =&\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}t\left( {x, x_{i} , x_{j} } \right)f\left( {x, x_{i} , x_{j} }\right)dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }}\mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} t\left( {x, x_{i} , x_{j} } \right)f\left( {x, x_{i} ,x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ =&\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\frac{{x_{j} - x_{i} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x}\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{2x - x_{i} - x_{j}}}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}dx_{i} dx_{j} dx = \frac{1}{6}\left( { - 3Z_{1} -3Z_{2} + Z_{3} + 5Z_{4} } \right) \hfill \\ \end{aligned}$$
(A15)
$$ \begin{aligned} E\left[ {T^{2} } \right] =&\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{{\text{x}}}^{{Z_{4} }} \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx\\& +\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{{\text{x}}} \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \hfill \\=& \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} \mathop \int \limits_{{\text{x}}}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{\left( {x_{j} - x_{i} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{{\text{x}}} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{\left( {2x - x_{i} - x_{j}} \right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} -Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\ =& \frac{1}{6}\left( {2Z_{1}^{2} + 2Z_{2}^{2} + Z_{3}^{2} + 5Z_{4}^{2}+ 2Z_{1} Z_{2} - Z_{1} Z_{3} - 5Z_{1} Z_{4} - Z_{2} Z_{3} - 5Z_{2}Z_{4} } \right) \hfill \\ \end{aligned}$$
(A16)

For travel from F to E, the expression for travel time T is

$$ T = X_{i} - X + \left| {X - X_{j} } \right| = \left\{ \begin{gathered} X_{i} - X_{j} X \ge X_{j} \quad \quad \quad {\text{Case}}\;1 \hfill \\ X_{i} + X_{j} - 2XX < X_{j} \quad {\text{Case}}\;2 \hfill \\ \end{gathered} \right.$$

where \(X, X_{j} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} }\right]\) and \(X_{i} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} }\right]\) with a joint pdf \(f\left( {x, x_{i} , x_{j} } \right) =f\left( x \right)f\left( {x_{i} } \right)f\left( {x_{j} } \right) =\frac{1}{{\left( {Z_{2} - Z_{1} } \right)^{2} \left( {Z_{4} - Z_{3}} \right)}}\). The first two moments of T are:

$$ \begin{aligned} E\left[ T \right] =&\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{x_{j} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} t\left( {x, x_{i} , x_{j} } \right)f\left( {x, x_{i} ,x_{j} } \right)dx_{i} dxdx_{j} \\&+ \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{{x_{j} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} t\left( {x, x_{i} , x_{j} }\right)f\left( {x, x_{i} , x_{j} } \right)dx_{i} dxdx_{j} \hfill \\=& \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{x_{j} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} \frac{{x_{i} - x_{j} }}{{\left( {Z_{2} - Z_{1} }\right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dxdx_{j}\\& +\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{{x_{j} }} \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} \frac{{x_{i} + x_{j} - 2x}}{{\left( {Z_{2} - Z_{1} }\right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dxdx_{j} \hfill \\ =& \frac{1}{6}\left( { - 5Z_{1} - Z_{2} + 3Z_{3} + 3Z_{4} }\right) \hfill \\ \end{aligned}$$
(A17)
$$ \begin{aligned} E\left[ {T^{2} } \right] =&\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{x_{j} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dxdx_{j}\\& +\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{{x_{j} }} \mathop \int \limits_{{Z_{3}}}^{{Z_{4} }} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dxdx_{j}\hfill \\ =& \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{x_{j} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{\left( {x_{i} - x_{j} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)^{2} }}dx_{i} dxdx_{j} \\&+ \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{{x_{j} }} \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \frac{{\left( {x_{i} + x_{j} -2x} \right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} -Z_{3} } \right)^{2} }}dx_{i} dxdx_{j} \hfill \\ =&\frac{1}{6}\left( {5Z_{1}^{2} + Z_{2}^{2} + 2Z_{3}^{2} + 2Z_{4}^{2}- 5Z_{1} Z_{3} - 5Z_{1} Z_{4} - Z_{2} Z_{3} - Z_{2} Z_{4} + 2Z_{3}Z_{4} } \right) \hfill \\ \end{aligned}$$
(A18)

Travel pattern (b) with \(Z_{1} \le Z_{3}\le Z_{2} \le Z_{4}\).

For travel from E to F, the expression for travel time T is

$$ T\left( {X,~X_{i} ,~X_{j} } \right) = \left| {X - X_{i} \left| + \right|X - X_{j} } \right| = \left\{ \begin{gathered} 2X - X_{i} - X_{j} \quad X \ge X_{i} ,~X \ge X_{j} \quad {\text{Case}}\;1 \hfill \\ X_{j} - X_{i} \quad \quad \quad \quad X \ge X_{i} ,~X < X_{j} \quad {\text{Case~}}\;2 \hfill \\ X_{i} - X_{j} \quad \quad \quad \quad X < X_{i} ,~X \ge X_{j} \quad {\text{Case}}\;3 \hfill \\ X_{i} + X_{j} - 2X\quad X < X_{i} ,~X < X_{j} \quad {\text{Case~}}\;4 \hfill \\ \end{gathered} \right. $$

where \(X_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2}} \right]\) and \(X, X_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} }\right]\) with a joint pdf \(f\left( {x, x_{i} , x_{j} } \right) =f\left( x \right)f\left( {x_{i} } \right)f\left( {x_{j} } \right) =\frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}\). The first two moments of T are:

$$ \begin{aligned} E\left[ T \right] =&\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{\min \left({x, Z_{2} } \right)}} t\left( {x, x_{i} , x_{j} } \right)f\left( {x,x_{i} , x_{j} } \right)dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }}\mathop \int \limits_{{Z_{1} }}^{{\min \left( {x, Z_{2} } \right)}}t\left( {x, x_{i} , x_{j} } \right)f\left( {x, x_{i} , x_{j} }\right)dx_{i} dx_{j} dx \hfill \\& + \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x}\mathop \int \limits_{x}^{{Z_{2} }} t\left( {x, x_{i} , x_{j} }\right)f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4}}} \mathop \int \limits_{x}^{{Z_{2} }} t\left( {x, x_{i} , x_{j} }\right)f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \hfill \\=& \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }}\mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1}}}^{x} \frac{{2x - x_{i} - x_{j} }}{{\left( {Z_{2} - Z_{1} }\right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{2} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\frac{{2x - x_{i} - x_{j} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\&+ \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{x}\frac{{x_{j} - x_{i} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{2} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }}\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{x_{j} - x_{i}}}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}dx_{i} dx_{j} dx \hfill \\ &+ \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3}}}^{x} \mathop \int \limits_{x}^{{Z_{2} }} \frac{{x_{i} - x_{j}}}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{3}}}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{2} }} \frac{{x_{i} + x_{j} - 2x}}{{\left( {Z_{2} -Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j}dx \hfill \\ =& \frac{1}{{6\left( {Z_{2} - Z_{1} }\right)\left( {Z_{4} - Z_{3} } \right)}}\left( 2Z_{2}^{3} -2Z_{3}^{3} + Z_{1} Z_{3}^{2} - 5Z_{1} Z_{4}^{2} - 3Z_{1}^{2} Z_{3} +3Z_{1}^{2} Z_{4} \right.\\&\left.+ 5Z_{2} Z_{3}^{2} + 5Z_{2} Z_{4}^{2}- 3Z_{2}^{2}Z_{3} - 3Z_{2}^{2} Z_{4} + 4Z_{1} Z_{3} Z_{4} - 4Z_{2} Z_{3} Z_{4}\right) \hfill \\ \end{aligned}$$
(A19)
$$ \begin{aligned} E\left[ {T^{2} } \right] =&\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{\min \left({x, Z_{2} } \right)}} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \\&+\mathop \int \limits_{{Z_{3} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{\min \left({x, Z_{2} } \right)}} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ &+ \mathop \int \limits_{{Z_{3}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{x}^{{Z_{2} }} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \\&+\mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{2} }} \left[{t\left( {x, x_{i} , x_{j} } \right)} \right]^{2} f\left( {x, x_{i}, x_{j} } \right)dx_{i} dx_{j} dx \hfill \\=& \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{x}\frac{{\left( {2x - x_{i} - x_{j} } \right)^{2} }}{{\left( {Z_{2} -Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j}dx \\&+ \mathop \int \limits_{{Z_{2} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\frac{{\left( {2x - x_{i} - x_{j} } \right)^{2} }}{{\left( {Z_{2} -Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j}dx \hfill \\&+ \mathop \int \limits_{{Z_{3}}}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{x} \frac{{\left( {x_{j} - x_{i} } \right)^{2}}}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{2}}}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{\left( {x_{j} - x_{i} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)^{2} }}dx_{i} dx_{j} dx \hfill \\& +\mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{x}^{{Z_{2} }}\frac{{\left( {x_{i} - x_{j} } \right)^{2} }}{{\left( {Z_{2} - Z_{1}} \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{2} }}\frac{{\left( {x_{i} + x_{j} - 2x} \right)^{2} }}{{\left( {Z_{2} -Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j}dx \hfill \\=& \frac{1}{{30\left( {Z_{2} - Z_{1} }\right)\left( {Z_{4} - Z_{3} } \right)^{2} }} \ge \left( 2Z_{2}^{5}- 7 Z_{3}^{5} - 5 Z_{1} Z_{3}^{4} - 25Z_{1} Z_{4}^{4} + 5 Z_{1}^{2}Z_{3}^{3} \right. \hfill \\&+ 25Z_{1}^{2} Z_{4}^{3} - 10Z_{1}^{3} Z_{3}^{2} - 10 Z_{1}^{3} Z_{4}^{2} + 25Z_{2} Z_{3}^{4} + 25Z_{2} Z_{4}^{4}- 25Z_{2}^{2} Z_{3}^{3} \\&-25Z_{2}^{2} Z_{4}^{3} + 20 Z_{2}^{3} Z_{3}^{2} + 20Z_{2}^{3}Z_{4}^{2}\\& - 5Z_{2}^{4} Z_{3} - 5Z_{2}^{4} Z_{4} - 10Z_{3}^{3}Z_{4}^{2} + 15Z_{3}^{4} Z_{4} + 50 Z_{1} Z_{3} Z_{4}^{3} - 30 Z_{1}Z_{3}^{2} Z_{4}^{2} \\&+ 10 Z_{1} Z_{3}^{3} Z_{4} - 45Z_{1}^{2} Z_{3}Z_{4}^{2} + 15Z_{1}^{2} Z_{3}^{2} Z_{4} + 20 Z_{1}^{3} Z_{3} Z_{4} - 50 Z_{2} Z_{3} Z_{4}^{3} \hfill \\&\left. {+60Z_{2} Z_{3}^{2} Z_{4}^{2} - 50 Z_{2} Z_{3}^{3} Z_{4} + 15Z_{2}^{2}Z_{3} Z_{4}^{2} + 15Z_{2}^{2} Z_{3}^{2} Z_{4} - 20Z_{2}^{3} Z_{3}Z_{4} } \right) \hfill \\ \end{aligned}$$
(A20)

For travel from F to E, the expression for travel time T is

$$ T\left( {X,~X_{i} ,~X_{j} } \right) = \left| {X - X_{i} \left| + \right|X - X_{j} } \right| = \left\{ \begin{gathered} 2X - X_{i} - X_{j} \quad \quad X \ge X_{i} ,~X \ge X_{j} \quad \quad {\text{Case~}}\;1 \hfill \\ X_{j} - X_{i} \quad \quad \quad \quad X \ge X_{i} ,~X < X_{j} \quad \quad {\text{Case~}}\;2 \hfill \\ X_{i} - X_{j} \quad \quad \quad \quad X < X_{i} ,~X \ge X_{j} \quad \quad {\text{Case~}}\;3 \hfill \\ X_{i} + X_{j} - 2X\quad \quad X < X_{i} ,~X < X_{j} \quad \quad {\text{Case~}}\;4 \hfill \\ \end{gathered} \right. $$

where \(x, x_{j} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2} } \right]\) and \(x_{i} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} } \right]\) with a joint pdf \(f\left( {x, x_{i} , x_{j} } \right) = f\left( x \right)f\left( {x_{i} } \right)f\left( {x_{j} } \right) = \frac{1}{{\left( {Z_{4} - Z_{3} } \right)\left( {Z_{2} - Z_{1} } \right)^{2} }}\). The first two moments of T are:

$$\begin{aligned}E\left[T\right]=&{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{{Z}_{3}}^{x}t({x,x}_{i}, {x}_{j})f(x, {x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{{Z}_{3}}^{x}t({x,x}_{i}, {x}_{j})f(x, {x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{{\mathrm{max}(x,Z}_{3})}^{{Z}_{4}}t({x, x}_{i}, {x}_{j})f(x, {x}_{i},{x}_{j})d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{{\mathrm{max}(x, Z}_{3})}^{{Z}_{2}}t({x,x}_{i}, {x}_{j})f(x, {x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\=&{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{{Z}_{3}}^{x}\frac{{2x-x}_{i}-{x}_{j}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{{Z}_{3}}^{x}\frac{{{x}_{j}-x}_{i}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{3}}{\int }_{{Z}_{1}}^{x}{\int }_{{Z}_{3}}^{{Z}_{4}}\frac{{x}_{i}-{x}_{j}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{x}^{{Z}_{4}}\frac{{x}_{i}-{x}_{j}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{3}}{\int }_{x}^{{Z}_{2}}{\int }_{{Z}_{3}}^{{Z}_{2}}\frac{{x}_{i}+{x}_{j}-2x}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{x}^{{Z}_{4}}\frac{{x}_{i}+{x}_{j}-2x}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\=&\frac{1}{6({Z}_{2}-{Z}_{1})({Z}_{4}-{Z}_{3})}\left(2 {{Z}_{2}}^{3}-2{{Z}_{3}}^{3}+3{Z}_{1}{{Z}_{3}}^{2}-3{Z}_{1}{{Z}_{4}}^{2}-5 {{Z}_{1}}^{2}{Z}_{3}+5{{Z}_{1}}^{2}{Z}_{4}\right.\\&\left.+3{Z}_{2}{{Z}_{3}}^{2}+3 {Z}_{2}{{Z}_{4}}^{2}-5{{Z}_{2}}^{2}{Z}_{3}-{{Z}_{2}}^{2}{Z}_{4}+4{Z}_{1}{Z}_{2}{Z}_{3}-4{Z}_{1}{Z}_{2}{Z}_{4}\right)\end{aligned}$$
(A21)
$$\begin{aligned}E\left[{T}^{2}\right]=&{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{{Z}_{3}}^{x}{\left[t(x, {x}_{i}, {x}_{j})\right]}^{2}f(x,{x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{{Z}_{3}}^{x}{\left[t(x, {x}_{i},{x}_{j})\right]}^{2}f(x, {x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{{\mathrm{max}(x,Z}_{3})}^{{Z}_{4}}{\left[t(x, {x}_{i}, {x}_{j})\right]}^{2}f(x,{x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{{\mathrm{max}(x,Z}_{3})}^{{Z}_{2}}{\left[t(x, {x}_{i}, {x}_{j})\right]}^{2}f(x,{x}_{i}, {x}_{j})d{x}_{i}d{x}_{j}dx\\=&{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{{Z}_{3}}^{x}\frac{{({2x-x}_{i}-{x}_{j})}^{2}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{{Z}_{3}}^{x}\frac{{({{x}_{j}-x}_{i})}^{2}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{3}}{\int }_{{Z}_{1}}^{x}{\int }_{{Z}_{3}}^{{Z}_{4}}\frac{{({x}_{i}-{x}_{j})}^{2}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{{Z}_{1}}^{x}{\int }_{x}^{{Z}_{4}}\frac{{({x}_{i}-{x}_{j})}^{2}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{1}}^{{Z}_{3}}{\int }_{x}^{{Z}_{2}}{\int }_{{Z}_{3}}^{{Z}_{2}}\frac{{({x}_{i}+{x}_{j}-2x)}^{2}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\&+{\int }_{{Z}_{3}}^{{Z}_{2}}{\int }_{x}^{{Z}_{2}}{\int }_{x}^{{Z}_{4}}\frac{{({x}_{i}+{x}_{j}-2x)}^{2}}{\left({Z}_{4}-{Z}_{3}\right){\left({Z}_{2}-{Z}_{1}\right)}^{2}}d{x}_{i}d{x}_{j}dx\\=& \frac{1}{{30(Z_{2} - Z_{1} )^{2} (Z_{4} - Z_{3} )}}(7Z_{2} ^{5} - 2Z_{3} ^{5} - 15Z_{1} Z_{2} ^{4} + 5Z_{1} Z_{3} ^{4} + 10Z_{1} ^{2} Z_{2} ^{3} \hfill \\&- 20Z_{1} ^{2} Z_{3} ^{3} + 10Z_{1} ^{2} Z_{4} ^{3} + 25Z_{1} ^{3} Z_{3} ^{2}- 25Z_{1} ^{3} Z_{4} ^{2} - 25Z_{1} ^{4} Z_{3} + 25Z_{1} ^{4}Z_{4} \hfill \\ & + 5Z_{2} Z_{3} ^{4} - 20Z_{2} ^{2} Z_{3} ^{3}+ 10Z_{2} ^{2} Z_{4} ^{3} + 25Z_{2} ^{3} Z_{3} ^{2} - 5Z_{2} ^{3}Z_{4} ^{2} - 25Z_{2} ^{4} Z_{3} \hfill \\ & + 5Z_{2} ^{4} Z_{4}+ 20Z_{1} Z_{2} Z_{3} ^{3} - 20Z_{1} Z_{2} Z_{4} ^{3} - 15Z_{1}Z_{2} ^{2} Z_{3} ^{2} - 15Z_{1} Z_{2} ^{2} Z_{4} ^{2} \hfill \\&+ 50Z_{1} Z_{2} ^{3} Z_{3} - 10Z_{1} Z_{2} ^{3} Z_{4} - 15Z_{1}^{2} Z_{2} Z_{3} ^{2} + 45Z_{1} ^{2} Z_{2} Z_{4} ^{2} - 60Z_{1}^{2} Z_{2} ^{2} Z_{3} \hfill \\ & + 30Z_{1} ^{2} Z_{2} ^{2} Z_{4}+ 50Z_{1} ^{3} Z_{2} Z_{3} - 50Z_{1} ^{3} Z_{2} Z_{4})\end{aligned}$$
(A22)

Travel pattern (c) with \(Z_{3} \le Z_{1}\le Z_{2} \le Z_{4}\)

For travel from E to F, the expression for travel time T is

$$T(X, {X}_{i},{X}_{j})=|X-{X}_{i}|+|X-{X}_{j}|=\left\{\begin{array}{l@{\quad}l}{2X-X}_{i}-{X}_{j}& X\ge {X}_{i}, X\ge {X}_{j}\,\,\, \mathrm{Case }\,1\\{{X}_{j}-X}_{i} &X\ge {X}_{i}, X<{X}_{j} \,\,\,\mathrm{Case }\,2\\{X}_{i}-{X}_{j} &X<{X}_{i}, X\ge {X}_{j} \,\,\,\mathrm{Case }\,3\\{X}_{i}+{X}_{j}-2X &X<{X}_{i}, X<{X}_{j} \,\,\,\mathrm{Case }\,4 \end{array}\right.$$

where \(x_{i} \sim {\text{unif}}\left[ {Z_{1} ,Z_{2}} \right]\) and \(x,{ }x_{j} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4} }\right]\) with a joint pdf \(f\left( {x,{ }x_{i} ,{ }x_{j} } \right) =f\left( x \right)f\left( {x_{i} } \right)f\left( {x_{j} } \right) =\frac{1}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}\). The first two moments of T are:

$$ \begin{aligned} E\left[ T \right] =&\mathop \int \limits_{{Z_{1} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{min\left({x, Z_{2} } \right)}} t\left( {x, x_{i} , x_{j} } \right)f\left( {x,x_{i} , x_{j} } \right)dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{1} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }}\mathop \int \limits_{{Z_{1} }}^{{min\left( {x, Z_{2} } \right)}}t\left( {x, x_{i} , x_{j} } \right)f\left( {x, x_{i} , x_{j} }\right)dx_{i} dx_{j} dx \hfill \\ & + \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x}\mathop \int \limits_{{max\left( {x, Z_{1} } \right)}}^{{Z_{2} }}t\left( {x, x_{i} , x_{j} } \right)f\left( {x, x_{i} , x_{j} }\right)dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }}\mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{max\left({x, Z_{1} } \right)}}^{{Z_{2} }} t\left( {x, x_{i} , x_{j} }\right)f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \hfill \\&= \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{x}\frac{{2x - x_{i} - x_{j} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{2} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x}\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{2x - x_{i} - x_{j}}}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}dx_{i} dx_{j} dx \hfill \\& + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }}\mathop \int \limits_{{Z_{1} }}^{x} \frac{{x_{j} - x_{i} }}{{\left({Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i}dx_{j} dx\\& + \mathop \int \limits_{{Z_{2} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\frac{{x_{j} - x_{i} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\&+ \mathop \int \limits_{{Z_{3} }}^{{Z_{1} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\frac{{x_{i} - x_{j} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x}\mathop \int \limits_{x}^{{Z_{2} }} \frac{{x_{i} - x_{j} }}{{\left({Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i}dx_{j} dx \hfill \\&+ \mathop \int \limits_{{Z_{3}}}^{{Z_{1} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{x_{i} + x_{j} - 2x}}{{\left({Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i}dx_{j} dx \\&+ \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{2} }}\frac{{x_{i} + x_{j} - 2x}}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\=& \frac{1}{{6\left( {Z_{4} - Z_{3} } \right)}}\left({2Z_{1}^{2} + 2Z_{2}^{2} + 5Z_{3}^{2} + 5Z_{4}^{2} + 2Z_{1} Z_{2} -3Z_{1} Z_{3} - 3Z_{1} Z_{4} } \right. \hfill \\&\left. { - 3Z_{2} Z_{3} - 3Z_{2} Z_{4} - 4Z_{3} Z_{4} } \right)\hfill \\ \end{aligned} $$
(A23)
$$ \begin{aligned} \left[ {T^{2} } \right] =&\mathop \int \limits_{{Z_{1} }}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{min\left({x, Z_{2} } \right)}} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{1} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{min\left({x, Z_{2} } \right)}} \left[ {t\left( {x, x_{i} , x_{j} } \right)}\right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ &+ \mathop \int \limits_{{Z_{3}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{max\left( {x, Z_{1} } \right)}}^{{Z_{2} }} \left[ {t\left({x, x_{i} , x_{j} } \right)} \right]^{2} f\left( {x, x_{i} , x_{j} }\right)dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{3} }}^{{Z_{2} }}\mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{max\left({x, Z_{1} } \right)}}^{{Z_{2} }} \left[ {t\left( {x, x_{i} , x_{j} }\right)} \right]^{2} f\left( {x, x_{i} , x_{j} } \right)dx_{i}dx_{j} dx \hfill \\ =& \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{x} \frac{{\left( {2x - x_{i} - x_{j} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)^{2} }}dx_{i} dx_{j} dx\\& + \mathop \int \limits_{{Z_{2}}}^{{Z_{4} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{\left( {2x - x_{i} - x_{j} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)^{2} }}dx_{i} dx_{j} dx \hfill \\&+ \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{x}\frac{{\left( {x_{j} - x_{i} } \right)^{2} }}{{\left( {Z_{2} - Z_{1}} \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{2} }}^{{Z_{4} }} \mathop \int \limits_{x}^{{Z_{4} }} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\frac{{\left( {x_{j} - x_{i} } \right)^{2} }}{{\left( {Z_{2} - Z_{1}} \right)\left( {Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\&+ \mathop \int \limits_{{Z_{3}}}^{{Z_{1} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{\left( {x_{i} - x_{j} }\right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3}} \right)^{2} }}dx_{i} dx_{j} dx \\&+ \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \mathop \int \limits_{x}^{{Z_{2} }} \frac{{\left( {x_{i} - x_{j} } \right)^{2}}}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} - Z_{3} }\right)^{2} }}dx_{i} dx_{j} dx \hfill \\&+ \mathop \int \limits_{{Z_{3} }}^{{Z_{1} }} \mathop \int \limits_{x}^{{Z_{4}}} \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \frac{{\left( {x_{i} +x_{j} - 2x} \right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left({Z_{4} - Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx\\&+ \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }}\mathop \int \limits_{x}^{{Z_{2} }} \frac{{\left( {x_{i} + x_{j} -2x} \right)^{2} }}{{\left( {Z_{2} - Z_{1} } \right)\left( {Z_{4} -Z_{3} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\=& \frac{1}{{30\left( {Z_{4} - Z_{3} } \right)^{2} }}\left( {2Z_{1}^{4}+ 2{ }Z_{2}^{4} + 25{ }Z_{3}^{4} + 25Z_{4}^{4} + 2Z_{1} Z_{2}^{3} -25{ }Z_{1} Z_{3}^{3} } \right. \hfill \\&- 25{ }Z_{1} Z_{4}^{3} + 2{ }Z_{1}^{2}Z_{2}^{2} + 20{ }Z_{1}^{2} Z_{3}^{2} \\&+ 20{ }Z_{1}^{2} Z_{4}^{2} + 2Z_{1}^{3} Z_{2} - 5{ }Z_{1}^{3}Z_{3} - 5{ }Z_{1}^{3} Z_{4} - 25Z_{2} Z_{3}^{3} { } - 25{ }Z_{2}Z_{4}^{3} \\&+ 20Z_{2}^{2} Z_{3}^{2} + 20Z_{2}^{2} Z_{4}^{2} -5Z_{2}^{3} Z_{3} - 5{ }Z_{2}^{3} Z_{4} \hfill \\&- 50{ }Z_{3} Z_{4}^{3} + 60Z_{3}^{2} Z_{4}^{2} { } - 50{ }Z_{3}^{3}Z_{4} { } + 20{ }Z_{1} Z_{2} Z_{3}^{2} + 20{ }Z_{1} Z_{2} Z_{4}^{2}\\&+ 15{ }Z_{1} Z_{3} Z_{4}^{2} - 5Z_{1} Z_{2}^{2} Z_{3} - 5{ }Z_{1}Z_{2}^{2} Z_{4} \hfill \\&+ 15{ }Z_{1}Z_{3}^{2} Z_{4} - 5Z_{1}^{2} Z_{2} Z_{3} - 5Z_{1}^{2} Z_{2} Z_{4} -20Z_{1}^{2} Z_{3} Z_{4}\\&\left. { + 15Z_{2} Z_{3} Z_{4}^{2} { } + 15{ }Z_{2}Z_{3}^{2} Z_{4} - 20{ }Z_{2}^{2} Z_{3} Z_{4} - 20Z_{1} Z_{2} Z_{3}Z_{4} } \right) \hfill \\ \end{aligned}$$
(A24)

For travel from F to E, the expression for travel time T is

$$ T\left( {X,~X_{i} ,~X_{j} } \right) = \left| {X - X_{i} \left| + \right|X - X_{j} } \right| = \left\{ \begin{gathered} 2X - X_{i} - X_{j} \quad \quad X \ge X_{i} ,~X \ge X_{j} \quad \quad {\text{Case~}}\;1 \hfill \\ X_{j} - X_{i} \quad \quad \quad \quad X \ge X_{i} ,~X < X_{j} \quad \quad {\text{Case~}}\;2 \hfill \\ X_{i} - X_{j} ~\quad \quad \quad \quad X < X_{i} ,~X \ge X_{j} \quad \quad {\text{Case~}}\;3 \hfill \\ X_{i} + X_{j} - 2X~\quad \quad X < X_{i} ,~X < X_{j} \quad \quad {\text{Case~}}\;4 \hfill \\ \end{gathered} \right. $$

where \(X,{ }X_{j} \sim {\text{unif}}\left[ {Z_{1},Z_{2} } \right]\) and \(X_{i} \sim {\text{unif}}\left[ {Z_{3} ,Z_{4}} \right]\) with a joint pdf \(f\left( {x,{ }x_{i} ,{ }x_{j} } \right) =f\left( x \right)f\left( {x_{i} } \right)f\left( {x_{j} } \right) =\frac{1}{{\left( {Z_{2} - Z_{1} } \right)^{2} \left( {Z_{4} - Z_{3}} \right)}}\). The first two moments of T are:

$$ \begin{gathered} E\left[ T \right] =\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{{Z_{3} }}^{x} t\left({x, x_{i} , x_{j} } \right)f\left( {x, x_{i} , x_{j} } \right)dx_{i}dx_{j} dx + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} t\left({x, x_{i} , x_{j} } \right)f\left( {x, x_{i} , x_{j} } \right)dx_{i}dx_{j} dx \hfill \\ \quad \quad \quad + \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{x}^{{Z_{4} }} t\left( {x, x_{i} , x_{j} } \right)f\left({x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }}\mathop \int \limits_{x}^{{Z_{4} }} t\left( {x, x_{i} , x_{j} }\right)f\left( {x, x_{i} , x_{j} } \right)dx_{i} dx_{j} dx \hfill \\\quad \quad \quad = \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }}\mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{{Z_{3}}}^{x} \frac{{2x - x_{i} - x_{j} }}{{\left( {Z_{4} - Z_{3} }\right)\left( {Z_{2} - Z_{1} } \right)^{2} }}dx_{i} dx_{j} dx +\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x}\frac{{x_{j} - x_{i} }}{{\left( {Z_{4} - Z_{3} } \right)\left({Z_{2} - Z_{1} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{x}^{{Z_{4} }}\frac{{x_{i} - x_{j} }}{{\left( {Z_{4} - Z_{3} } \right)\left({Z_{2} - Z_{1} } \right)^{2} }}dx_{i} dx_{j} dx + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }}\mathop \int \limits_{x}^{{Z_{4} }} \frac{{x_{i} + x_{j} -2x}}{{\left( {Z_{4} - Z_{3} } \right)\left( {Z_{2} - Z_{1} }\right)^{2} }}dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad =\frac{1}{{6\left( {Z_{4} - Z_{3} } \right)}}\left( {2Z_{1}^{2} +2Z_{2}^{2} + 3Z_{3}^{2} + 3Z_{4}^{2} + 2Z_{1} Z_{2} - Z_{1} Z_{3} -5Z_{1} Z_{4} - 5Z_{2} Z_{3} - Z_{2} Z_{4} } \right) \hfill \\\end{gathered} $$
(A25)
$$ \begin{gathered} E\left[ {T^{2} } \right] =\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{{Z_{3} }}^{x} \left[{t\left( {x, x_{i} , x_{j} } \right)} \right]^{2} f\left( {x, x_{i}, x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad +\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x} \left[{t\left( {x, x_{i} , x_{j} } \right)} \right]^{2} f\left( {x, x_{i}, x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad +\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{x}^{{Z_{4} }} \left[{t\left( {x, x_{i} , x_{j} } \right)} \right]^{2} f\left( {x, x_{i}, x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad =\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \left[{t\left( {x, x_{i} , x_{j} } \right)} \right]^{2} f\left( {x, x_{i}, x_{j} } \right)dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad =\mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{{Z_{3} }}^{x}\frac{{\left( {2x - x_{i} - x_{j} } \right)^{2} }}{{\left( {Z_{4} -Z_{3} } \right)\left( {Z_{2} - Z_{1} } \right)^{2} }}dx_{i} dx_{j}dx + \mathop \int \limits_{{Z_{1} }}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }} \mathop \int \limits_{{Z_{3} }}^{x}\frac{{\left( {x_{j} - x_{i} } \right)^{2} }}{{\left( {Z_{4} - Z_{3}} \right)\left( {Z_{2} - Z_{1} } \right)^{2} }}dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad + \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{{Z_{1} }}^{x} \mathop \int \limits_{x}^{{Z_{4} }} \frac{{\left( {x_{i} - x_{j} } \right)^{2}}}{{\left( {Z_{4} - Z_{3} } \right)\left( {Z_{2} - Z_{1} }\right)^{2} }}dx_{i} dx_{j} dx + \mathop \int \limits_{{Z_{1}}}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{2} }} \mathop \int \limits_{x}^{{Z_{4} }} \frac{{\left( {x_{i} + x_{j} - 2x}\right)^{2} }}{{\left( {Z_{4} - Z_{3} } \right)\left( {Z_{2} - Z_{1}} \right)^{2} }}dx_{i} dx_{j} dx \hfill \\ \quad \quad \quad =\frac{1}{{30\left( {Z_{4} - Z_{3} } \right)}}\left( { - 7Z_{1}^{3} +7{ }Z_{2}^{3} - 10{ }Z_{3}^{3} + 10Z_{4}^{3} - Z_{1} Z_{2}^{2} +5Z_{1} Z_{3}^{2} - 25Z_{1} Z_{4}^{2} } \right. \hfill \\ \left.{\quad \quad \quad + Z_{1}^{2} Z_{2} - 5Z_{1}^{2} Z_{3} +25Z_{1}^{2} Z_{4} + 25Z_{2} Z_{3}^{2} - 5Z_{2} Z_{4}^{2} -25Z_{2}^{2} Z_{3} + 5Z_{2}^{2} Z_{4} } \right) \hfill \\\end{gathered} $$
(A26)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liao, H. & White, J.A. Design of a class-based order picking system with stochastic demands and priority consideration. Ann Oper Res 331, 923–962 (2023). https://doi.org/10.1007/s10479-022-05107-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-05107-2

Keywords

Navigation