Skip to main content
Log in

An integrated multi-objective multi-product inventory managed production planning problem under uncertain environment

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Integrating inventory with production–distribution operations has critical importance realized by several companies’ top management a long time before; however, challenging. The management has to decide where to shift products, which demand to fulfil, from which distribution centre (s), how much inventory to keep and a host of critical and complex decisions. As the organization increase in size and complexity, more robust optimization tools required to help analyze and comprehend these complex decisions. In this study, inventory, production and distribution problems with planned shortages, back-ordered quantity and delay in replenishment studied under uncertainty. A multi-objective multi-product model for minimizing the inventory, production and shipment costs and delivery time developed for the integrated system. The study considers the model’s different input parameters under a fuzzy and stochastic environment. The fuzziness converted to deterministic using interval type-2 trapezoidal fuzzy number. The randomness follows the Maxwell–Boltzmann distribution in which the deterministic form obtained using chance-constrained programming. The developed integrated model illustrated a numerical example in a manufacturing firm and solved using three robust goal programming variants. The results indicated inventory, production and transshipment costs are 99% minimized with 100% delivery time achievement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadini, A. A. H., Modibbo, U. M., Shaikh, A. A., & Ali, I. (2021). Multiobjective optimization modelling of sustainable green supply chain in inventory and production management. Alexandria Engineering Journal, 60(6), 5129–5146.

    Article  Google Scholar 

  • Aliev, R. A., Fazlollahi, B., Guirimov, B. G., & Aliev, R. R. (2007). Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Information Sciences, 177(20), 4241–4255.

    Article  Google Scholar 

  • Ali, I., Fügenschuh, A., Gupta, S., & Modibbo, U. M. (2020). The LR-type fuzzy multi-objective vendor selection problem in supply chain management. Mathematics, 8(9), 1621.

    Article  Google Scholar 

  • Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51(1), 196–215.

    Article  Google Scholar 

  • Amirtaheri, O., Zandieh, M., Dorri, B., & Motameni, A. R. (2017). A bi-level programming approach for productiondistribution supply chain problem. Computers & Industrial Engineering, 110, 527–537.

    Article  Google Scholar 

  • Archetti, C., Bertazzi, L., Paletta, G., & Speranza, M. G. (2011). Analysis of the maximum level policy in a production–distribution system. Computers & Operations Research, 38(12), 1731–1746.

    Article  Google Scholar 

  • Avinadav, T., Herbon, A., & Spiegel, U. (2013). Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 144(2), 497–506.

    Article  Google Scholar 

  • Badhotiya, G. K., Soni, G., & Mittal, M. L. (2019). Fuzzy multi-objective optimization for multi-site integrated production and distribution planning in two echelon supply chain. The International Journal of Advanced Manufacturing Technology, 102(1–4), 635–645.

    Article  Google Scholar 

  • Beamon, B. M. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(3), 281–294.

    Article  Google Scholar 

  • Bekker, A. J. J. J., & Roux, J. J. J. (2005). Reliability characteristics of the Maxwell distribution: A Bayes estimation study. Communications in Statistics-Theory and Methods, 34(11), 2169–2178.

    Article  Google Scholar 

  • Bhattacharyya, M., & Sana, S. S. (2019). A mathematical model on eco-friendly manufacturing system under probabilistic demand. RAIRO-Operations Research, 53(5), 1899–1913.

    Article  Google Scholar 

  • Bhaya, S., Madhumangal, P., & Prasun, K. N. (2014). Intuitionistic fuzzy optimization technique in EOQ model with two types of imperfect quality items. Advanced Modeling and Optimization, 16(1), 33–50.

    Google Scholar 

  • Bhunia, A., & Shaikh, A. (2014). A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter weibull distributed deterioration. International Journal of Industrial Engineering Computations, 5(3), 497–510.

    Article  Google Scholar 

  • Bredstrom, D., & Ronnqvist, M. (2002). Integrated production planning and route scheduling in pulp mill industry. In Proceedings of the 35th annual Hawaii international conference on system sciences. HICSS.

  • Byrne, M. D., & Bakir, M. A. (1999). Production planning using a hybrid simulation-analytical approach. International Journal of Production Economics, 59(1–3), 305–311.

    Article  Google Scholar 

  • Chakrabortty, S., Pal, M., & Nayak, P. K. (2013). Intuitionistic fuzzy optimization technique for pareto optimal solution of manufacturing inventory models with shortages. European Journal of Operational Research, 228(2), 381–387.

    Article  Google Scholar 

  • Chaudhary, S., Kumar, J., & Tomer, S. K. (2017). Estimation of P [Y< X] for Maxwell distribution. Journal of Statistics and Management Systems, 20(3), 467–481.

    Article  Google Scholar 

  • Chen, M., & Wang, W. (1997). A linear programming model for integrated steel production and distribution planning. International Journal of Operations & Production Management, 17(6), 592–610. https://doi.org/10.1108/01443579710167276.

    Article  Google Scholar 

  • Chopra, S., Meindl, P., & Kalra, D. V. (2013). Supply chain management: Strategy, planning, and operation (Vol. 232). Boston, MA: Pearson.

    Google Scholar 

  • Cohen, M. A., & Lee, H. L. (1988). Strategic analysis of integrated production–distribution systems: Models and methods. Operations Research, 36(2), 216–228.

    Article  Google Scholar 

  • Cosmin, D., & Ana-Maria, S. (2013). Cost of quality and Taguchi loss function. Annals of the University Of Oradea, Economic Science Series, 22(1), 1479–1485.

    Google Scholar 

  • Dadvar, F., Nasseri, H., Shishebori, D., & Goodarzian, F. (2020a). A bi-objective production–distribution problem in a supply chain network under grey flexible conditions. RAIRO-Operations Research. https://doi.org/10.1051/ro/2020111.

  • Das, S., Khan, M. A. A., Mahmoud, E. E., Abdel-Aty, A. H., Abualnaja, K. M., & Shaikh, A. A. (2020a). A production inventory model with partial trade credit policy and reliability. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2020.10.054.

  • Das, S. C., Zidan, A. M., Manna, A. K., Shaikh, A. A., & Bhunia, A. K. (2020b). An application of preservation technology in inventory control system with price dependent demand and partial backlogging. Alexandria Engineering Journal.https://doi.org/10.1016/j.aej.2020.03.006.

  • De, S. K., Goswami, A., & Sana, S. S. (2014). An interpolating by pass to Pareto optimality in intuitionistic fuzzy technique for a EOQ model with time sensitive backlogging. Applied Mathematics and Computation, 230, 664–674.

    Article  Google Scholar 

  • Du, W., Leung, S. Y. S., & Kwong, C. K. (2015). A multiobjective optimization-based neural network model for short-term replenishment forecasting in fashion industry. Neurocomputing, 151, 342–353.

    Article  Google Scholar 

  • Dutta, D., & Kumar, P. (2015). Application of fuzzy goal programming approach to multi-objective linear fractional inventory model. International Journal of Systems Science, 46(12), 2269–2278.

    Article  Google Scholar 

  • Erengüç, ŞS., Simpson, N. C., & Vakharia, A. J. (1999). Integrated production/distribution planning in supply chains: An invited review. European Journal of Operational Research, 115(2), 219–236.

    Article  Google Scholar 

  • Fakhrzad, M. B., & Goodarzian, F. (2020). A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms. Journal of Optimization in Industrial Engineering. https://doi.org/10.22094/JOIE.2020.570636.1571.

  • Fattahi, P., Hajipour, V., & Nobari, A. (2015). A bi-objective continuous review inventory control model: Pareto-based meta-heuristic algorithms. Applied Soft Computing, 32, 211–223.

    Article  Google Scholar 

  • Festervand, T. A., Kethley, R. B., & Waller, B. D. (2001). The marketing of industrial real estate: Application of Taguchi loss functions. Journal of Multi-Criteria Decision Analysis, 10(4), 219–228.

    Article  Google Scholar 

  • García, J., & Peña, A. (2018). Robust optimization: concepts and applications. Nature-inspired methods for stochastic. Robust and Dynamic Optimization. https://doi.org/10.5772/intechopen.75381

  • García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2018). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357–380.

    Article  Google Scholar 

  • Gen, M., & Syarif, A. (2005). Hybrid genetic algorithm for multi-time period production distribution planning. International Journal of Industrial Engineering, 48, 799–809.

    Google Scholar 

  • Gen, M., & Syarif, A. (2005). Hybrid genetic algorithm for multi-time period production/distribution planning. Computers & Industrial Engineering, 48(4), 799–809.

    Article  Google Scholar 

  • Gharaei, A., & Jolai, F. (2018). A multi-agent approach to the integrated production scheduling and distribution problem in multi-factory supply chain. Applied Soft Computing, 188, 167–184.

    Google Scholar 

  • Goetschalckx, M., Vidal, C. J., & Dogan, K. (2002). Modeling and design of global logistics systems: A review of integrated strategic and tactical models and design algorithms. European Journal of Operational Research, 143, 1–18.

    Article  Google Scholar 

  • Goli, A., Tirkolaee, E. B., & Aydin, N. S. (2021). Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE Transactions on Fuzzy Systems, 29(12), 3686–3695.

    Article  Google Scholar 

  • Goodarzian, F., & Hosseini-Nasab, H. (2019). Applying a fuzzy multi-objective model for a production–distribution network design problem by using a novel self-adoptive evolutionary algorithm. International Journal of Systems Science: Operations & Logistics. https://doi.org/10.1080/23302674.2019.1607621.

  • Goodarzian, F., Hosseini-Nasab, H., Muñuzuri, J., & Fakhrzad, M. B. (2020a). A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: A comparison of meta-heuristics. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2020.106385.

  • Goodarzian, F., Hosseini-Nasab, H., & Fakhrzad, M. B. (2020b). A multi-objective sustainable medicine supply chain network design using a novel hybrid multi-objective metaheuristic algorithm. International Journal of Engineering, 33(10), 1986–1995.

  • Gören, H. G. (2018). A decision framework for sustainable supplier selection and order allocation with lost sales. Journal of Cleaner Production, 183, 1156–1169.

    Article  Google Scholar 

  • Graells-Garrido, E., & García, J. (2015). Visual exploration of urban dynamics using mobile data. In International conference on ubiquitous computing and ambient intelligence (pp. 480–491). Cham: Springer.

  • Graells-Garrido, E., Peredo, O., & García, J. (2016). Sensing urban patterns with antenna mappings: The case of Santiago, Chile. Sensors, 16(7), 1098.

    Article  Google Scholar 

  • Gupta, S., Ali, I., & Ahmed, A. (2018). Multi-objective bi-level supply chain network order allocation problem under fuzziness. OPSEARCH, 55, 721–748. https://doi.org/10.1007/s12597-018-0340-2.

  • Gupta, S., Ali, I., & Ahmed, A. (2018). Efficient fuzzy goal programming model for multi-objective production distribution problem. International Journal of Applied and Computational Mathematics, 4(2), 1–19. https://doi.org/10.1007/s40819-018-0511-0.

  • Jang, Y. J., Jang, S. Y., Chang, B. M., & Park, J. (2002). A combined model of network design and production/distribution planning for a supply network. Computers & Industrial Engineering, 43(1–2), 263–281.

    Article  Google Scholar 

  • Jayaraman, V., & Pirkul, H. (2001). Planning and coordination of production and distribution facilities for multiple commodities. European Journal of Operational Research, 133(2), 394–408.

    Article  Google Scholar 

  • Jiang, Y., Chen, M., & Zhou, D. (2015). Joint optimization of preventive maintenance and inventory policies for multi-unit systems subject to deteriorating spare part inventory. Journal of Manufacturing Systems, 35, 191–205.

    Article  Google Scholar 

  • Jung, H., Jeong, B., & Lee, C. G. (2008). An order quantity negotiation model for distributor-driven supply chains. International Journal of Production Economics, 111, 147–158.

    Article  Google Scholar 

  • Kanyalkar, A. P., & Adil, G. K. (2005). An integrated aggregate and detailed planning in a multi-site production environment using linear programming. International Journal of Production Research, 43, 4431–4454.

    Article  Google Scholar 

  • Kaur, H., & Singh, S. P. (2018). Heuristic modeling for sustainable procurement and logistics in a supply chain using big data. Computers & Operations Research, 98, 301–321.

    Article  Google Scholar 

  • Khakbaz, A., & Babaee Tirkolaee, E. (2021). A sustainable hybrid manufacturing/remanufacturing system with two-way substitution and WEEE directive under different market conditions. Optimization. https://doi.org/10.1080/02331934.2021.1935937.

  • Khalili, S. M., Jolai, F., & Torabi, S. A. (2017). Integrated production–distribution planning in two-echelon systems: A resilience view. International Journal of Production Research, 55(4), 1040–1064.

    Article  Google Scholar 

  • Khan, M. F., Haq, A., Ahmed, A., & Ali, I. (2021). Multiobjective multi-product production planning problem using intuitionistic and neutrosophic fuzzy programming. IEEE Access, 9, 37466–37486.

    Article  Google Scholar 

  • Kim, B., & Kim, S. (2001). Extended model for a hybrid production planning approach. International Journal of Production Economics, 73(2), 165–173.

    Article  Google Scholar 

  • Krishna, H., & Malik, M. (2009). Reliability estimation in Maxwell distribution with Type-II censored data. International Journal of Quality & reliability management, 26(2), 184–195.

    Article  Google Scholar 

  • Krishna, H., & Malik, M. (2012). Reliability estimation in Maxwell distribution with progressively type-II censored data. Journal of Statistical Computation and Simulation, 82(4), 623–641.

    Article  Google Scholar 

  • Kumar, P., & Dutta, D. (2015). Multi-objective linear fractional inventory model of multi-products with price-dependant demand rate in fuzzy environment. International Journal of Mathematics in Operational Research, 7(5), 547–565.

    Article  Google Scholar 

  • Lee, Y. H., & Kim, S. H. (2000). Optimal production-distribution planning in supply chain management using a hybrid simulation-analytic approach. In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165) (Vol. 2, pp. 1252-1259). IEEE.

  • Lee, Y. H., & Kim, S. H. (2002). Production–distribution planning in supply chain considering capacity constraints. Computers & Industrial Engineering, 43(1–2), 169–190.

    Article  Google Scholar 

  • Liang, T. F. (2008). Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Computers & Industrial Engineering, 55(3), 676–694.

    Article  Google Scholar 

  • Li, P., Arellano-Garcia, H., & Wozny, G. (2008). Chance constrained programming approach to process optimization under uncertainty. Computers & Chemical Engineering, 32(1–2), 25–45.

    Article  Google Scholar 

  • Lofthouse, T. (1999). The Taguchi loss function. Work Study.

  • Manna, A. K., Mondal, R., Shaikh, A. A., Ali, I., & Bhunia, A. K. (2021). Single-manufacturer and multi-retailer supply chain model with pre-payment based partial free transportation. RAIRO-Operations Research. https://doi.org/10.1051/ro/2021053

  • Mardani, A., Kannan, D., Hooker, R. E., Ozkul, S., Alrasheedi, M., & Tirkolaee, E. B. (2020). Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research. Journal of Cleaner Production, 249, 119383.

    Article  Google Scholar 

  • Martin, C. H., Dent, D. C., & Eckhart, J. C. (1993). Integrated production, distribution, and inventory planning at Libbey–Owens–Ford. Interfaces, 23, 78–86.

    Google Scholar 

  • Miranbeigi, M., Moshiri, B., & Rahimi Kian, A. (2016). Application of distributed control on a large-scale production/distribution/inventory system. Systems Science & Control Engineering, 4(1), 68–77.

    Article  Google Scholar 

  • Mukhopadhyay, A., & Goswami, A. (2013). Economic production quantity (EPQ) model for three type imperfect items with rework and learning in setup. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 4(1), 57–65.

    Google Scholar 

  • Mukhopadhyay, A., & Goswami, A. (2014). Economic production quantity models for imperfect items with pollution costs. Systems Science & Control Engineering: An Open Access Journal, 2(1), 368–378.

    Article  Google Scholar 

  • Nemati, Y., & Mohammad, H. A. (2019). A fuzzy bi-objective MILP approach to integrate sales, production, distribution and procurement planning in a FMCG supply chain. Soft Computing, 23(13), 4871–4890.

    Article  Google Scholar 

  • Nourifar, R., Mahdavi, I., Mahdavi-Amiri, N., & Paydar, M. M. (2018). Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty. Journal of Industrial Engineering International, 14(2), 367–382.

    Article  Google Scholar 

  • Oh, H. C., & Karimi, I. A. (2006). Global multiproduct production–distribution planning with duty drawbacks. AIChE Journal, 52, 595–610.

    Article  Google Scholar 

  • Park, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205–1224.

    Article  Google Scholar 

  • Peredo, O. F., García, J. A., Stuven, R., & Ortiz, J. M. (2017). Urban dynamic estimation using mobile phone logs and locally varying anisotropy. In Geostatistics Valencia 2016 (pp. 949–964). Cham: Springer.

  • Phadke, M. S. (1995). Quality engineering using robust design. Prentice Hall PTR.

  • Pishvaee, M. S., Jolai, F., & Razmi, J. (2009). A stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28(4), 107–114.

    Article  Google Scholar 

  • Priyan, S., & Uthayakumar, R. (2014). An integrated production–distribution inventory system for deteriorating products involving fuzzy deterioration and variable setup cost. Journal of Industrial and Production Engineering, 31(8), 491–503.

    Article  Google Scholar 

  • Priyan, S., & Uthayakumar, R. (2017). An integrated production–distribution inventory system involving probabilistic defective and errors in quality inspection under variable setup cost. International Transactions in Operational Research, 24(6), 1487–1524.

    Article  Google Scholar 

  • Rafiei, M., Mohammadi, M., & Torabi, S. (2013). Reliable multi period multi product supply chain design with facility disruption. Decision Science Letters, 2(2), 81–94.

    Article  Google Scholar 

  • Rizk, N., Martel, A., & Damours, S. (2008). Synchronized production–distribution planning in a single-plantmultidestination network. Journal of the Operational Research Society, 59, 90–104.

    Article  Google Scholar 

  • Rooderkerk, R. P., & van Heerde, H. J. (2016). Robust optimization of the 0–1 knapsack problem: Balancing risk and return in assortment optimization. European Journal of Operational Research, 250(3), 842–854.

    Article  Google Scholar 

  • Ryu, J. H., Dua, V., & Pistikopoulos, E. N. (2004). A bilevel programming framework for enterprise-wide process networks under uncertainty. Computers & Chemical Engineering, 28, 1121–1129.

    Article  Google Scholar 

  • Sabri, E., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28, 581–598.

    Article  Google Scholar 

  • Sana, S. S. (2011). Price-sensitive demand for perishable items—An EOQ model. Applied Mathematics and Computation, 217(13), 6248–6259.

    Article  Google Scholar 

  • Sarrafha, K., Rahmati, S. H. A., Niaki, S. T. A., & Zaretalab, A. (2015). A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA. Computers and Operations Research, 54, 35–51.

    Article  Google Scholar 

  • Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396–419.

    Article  Google Scholar 

  • Shah, N. H., & Soni, H. (2011). A multi-objective production inventory model with backorder for fuzzy random demand under flexibility and reliability. Journal of Mathematical Modelling and Algorithms, 10(4), 341–356.

    Article  Google Scholar 

  • Singh, P., Kumari, S., & Singh, P. (2017). Fuzzy efficient interactive goal programming approach for multi-objective transportation problems. International Journal of Applied and Computational Mathematics, 3(2), 505–525.

    Article  Google Scholar 

  • Sinha, B., Das, A., & Bera, U. K. (2016). Profit maximization solid transportation problem with trapezoidal interval type-2 fuzzy numbers. International Journal of Applied and Computational Mathematics, 2(1), 41–56.

    Article  Google Scholar 

  • Taguchi, G. (1987). Introduction to quality engineering: Designing quality into products and processes, asian productivity organization, Tokyo, 1986. American distribution by UNIPUB. Konishi, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, American Supplier Institute, Dearborn.

  • Taguchi, G., Elsayed, E. A., & Hsiang, T. C. (1989). Quality engineering in production systems. McGraw-Hill College.

  • Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94(1), 1–15 (Beamon, B. M. (1998).).

    Article  Google Scholar 

  • Tirkolaee, E. B., Dashtian, Z., Weber, G. W., Tomaskova, H., Soltani, M., & Mousavi, N. S. (2021). An integrated decision-making approach for green supplier selection in an agri-food supply chain: Threshold of robustness worthiness. Mathematics, 9(11), 1304.

    Article  Google Scholar 

  • Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G. W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Journal of Cleaner Production, 250, 119517.

    Article  Google Scholar 

  • Tomer, S. K., & Panwar, M. S. (2015). Estimation procedures for Maxwell distribution under type-I progressive hybrid censoring scheme. Journal of Statistical Computation and Simulation, 85(2), 339–356.

    Article  Google Scholar 

  • Tyagi, R. K., & Bhattacharya, S. K. (1989). A note on the MVU estimation of reliability for the Maxwell failure distribution. Estadistica, 41(137), 73–79.

    Google Scholar 

  • Tyagi, R. K., & Bhattacharya, S. K. (1989). Bayes estimation of the Maxwell velocity distribution function. Statistica, 29(4), 563–567.

    Google Scholar 

  • Vidal, C. J., & Goetschalckx, M. (1997). Strategic production–distribution models: A critical review with emphasis on global supply chain models. European Journal of Operational Research, 98(1), 1–18.

    Article  Google Scholar 

  • Wee, H.-M., Lo, C.-C., & Hsu, P.-H. (2009). A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. European Journal of Operational Research, 197(2), 620–631.

    Article  Google Scholar 

  • Wei, W., Guimarães, L., Amorim, P., & Almada-Lobo, B. (2017). Tactical production and distribution planning with dependency issues on the production process. Omega, 67, 99–114.

    Article  Google Scholar 

  • Xu, J., & Zhao, L. (2008). A class of fuzzy rough expected value multi-objective decision making model and its application to inventory problems. Computers & Mathematics with Applications, 56(8), 2107–2119.

    Article  Google Scholar 

  • Xu, J., & Zhao, L. (2010). A multi-objective decision-making model with fuzzy rough coefficients and its application to the inventory problem. Information Sciences, 180(5), 679–696.

    Article  Google Scholar 

  • Zhang, M., Chen, J., & Chang, S. H. (2020). An adaptive simulation analysis of reliability model for the system of supply chain based on partial differential equations. Alexandria Engineering Journal.https://doi.org/10.1016/j.aej.2020.03.002.

  • Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1, 45–55.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Editor-in-Chief, Special Issue Guest editors, and the anonymous reviewers for their valuable suggestions which improved the quality and presentation of this original research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ali.

Ethics declarations

Conflict of interest

The authors declared no conflicting interest regarding the authorship arrangement and publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modibbo, U.M., Gupta, S., Ahmed, A. et al. An integrated multi-objective multi-product inventory managed production planning problem under uncertain environment. Ann Oper Res (2022). https://doi.org/10.1007/s10479-022-04795-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-022-04795-0

Keywords

Navigation