Skip to main content
Log in

Computing the hull number in toll convexity

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A tolled walk W between vertices u and v in a graph G is a walk in which u is adjacent only to the second vertex of W and v is adjacent only to the second-to-last vertex of W. A set \(S \subseteq V(G)\) is toll convex if the vertices contained in any tolled walk between two vertices of S are contained in S. The toll convex hull of S is the minimum toll convex set containing S. The toll hull number of G is the minimum cardinality of a set whose toll convex hull is V(G). The main contribution of this work is a polynomial-time algorithm for computing the toll hull number of a general graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albenque, M., & Knauer, K. (2016). Convexity in partial cubes: The hull number. Discrete Mathematics, 339, 866–876.

    Article  Google Scholar 

  • Alcón, L., Brešar, B., Gologranc, T., Gutierrez, M., Šumenjak, T. K., Peterin, I., & Tepeh, A. (2015). Toll convexity. European Journal of Combinatorics, 46, 161–175.

    Article  Google Scholar 

  • Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., & Soares, R. (2013). On the hull number of some graph classes. Theoretical Computer Science, 475, 1–12.

    Article  Google Scholar 

  • Araujo, J., Morel, G., Sampaio, L., Soares, R., & Weber, V. (2016). Hull number: \(P_5\)-free graphs and reduction rules. Discrete Applied Mathematics, 210, 171–175.

    Article  Google Scholar 

  • Bessy, S., Dourado, M. C., Penso, L. D., & Rautenbach, D. (2018). The geodetic hull number is hard for chordal graphs. SIAM Journal on Discrete Mathematics, 32, 543–547.

    Article  Google Scholar 

  • Centeno, C. C., Dourado, M. C., Penso, L. D., Rautenbach, D., & Szwarcfiter, J. L. (2011). Irreversible conversion of graphs. Theoretical Computer Science, 412, 3693–3700.

    Article  Google Scholar 

  • Coelho, E. M. M., Dourado, M. C., & Sampaio, R. M. (2015). Inapproximability results for graph convexity parameters. Theoretical Computer Science, 600, 49–58.

    Article  Google Scholar 

  • Dourado, M. C., Gimbel, J. G., Kratochvíl, J., Protti, F., & Szwarcfiter, J. L. (2009). On the computation of the hull number of a graph. Discrete Mathematics, 309, 5668–5674.

    Article  Google Scholar 

  • Dourado, M. C., Protti, F., & Szwarcfiter, J. L. (2010). Complexity results related to monophonic convexity. Discrete Applied Mathematics, 158(12), 1268–1274.

    Article  Google Scholar 

  • Dourado, M. C., Rautenbach, D., dos Santos, V. F., Schäfer, P. M., Szwarcfiter, J. L., & Toman, A. (2012). An upper bound on the \(P_3\)-Radon number. Discrete Mathematics, 312, 2433–2437.

    Article  Google Scholar 

  • Duchet, P. (1988). Convex sets in graphs, II: Minimal path convexity. Journal of Combinatorial Theory, Series B, 44, 307–316.

    Article  Google Scholar 

  • Edelman, P. H., & Jamison, R. E. (1985). The theory of convex geometries. Geometriae Dedicata, 19, 247–270.

    Article  Google Scholar 

  • Farber, M., & Jamison, R. E. (1986). Convexity in graphs and hypergraphs. SIAM Journal on Algebraic Discrete Methods, 7, 433–444.

    Article  Google Scholar 

  • Gimbel, J. G. (2003). Some remarks on the convexity number of a graph. Graphs and Combinatorics, 19, 357–361.

    Article  Google Scholar 

  • Gologranc, T., & Repolusk, P. (2017). Toll number of the Cartesian and the lexicographic product of graphs. Discrete Mathematics, 340, 2488–2498.

    Article  Google Scholar 

  • Henning, M. A., Rautenbach, D., & Schäfer, P. M. (2013). Open packing, total domination, and the \(P_3\)-Radon number. Discrete Mathematics, 313, 992–998.

    Article  Google Scholar 

  • Kante, M. M., & Nourine, L. (2016). Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs. SIAM Journal on Discrete Mathematics, 30(1), 311–326.

    Article  Google Scholar 

  • Leimer, H.-G. (1993). Optimal decomposition by clique separators. Discrete Mathematics, 113, 99–123.

    Article  Google Scholar 

  • Pelayo, I. M. (2013). Geodesic convexity in graphs. Springer.

  • van de Vel, M. L. J. (1993). Theory of convex structures. North-Holland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitre C. Dourado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, Grant number 305404/2020-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourado, M.C. Computing the hull number in toll convexity. Ann Oper Res 315, 121–140 (2022). https://doi.org/10.1007/s10479-022-04694-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04694-4

Keywords

Mathematics Subject Classification

Navigation