Skip to main content
Log in

Data-driven decision model based on local two-stage weighted ensemble learning

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

To improve the decision performance using historical decision data, this paper proposes a data-driven decision model based on local two-stage weighted ensemble learning. The assessments of historical alternatives are collected from a multicriteria framework. For each new alternative, a set of its similar alternatives is determined from historical alternatives using the K-Nearest Neighbor technique, and then a set of base classifiers (BCs) is generated by the historical assessments. Based on ensemble error and diversity of BCs in predicting the similar historical alternatives of the new alternative, a local two-stage weighted ensemble method is developed to learn the optimal BC weights for the new alternative. Such a learning process not only considers the changes of BCs’ competence in facing different alternatives (instances) but also avoids falling into the dilemma of balancing the accuracy and diversity of BCs. By combining the continuous outputs of different BCs with the learned BC weights, the weighted ensemble outputs are obtained for the similar historical alternatives of the new alternative. Based on these outputs and the assessments of those similar historical alternatives on criteria, a linear optimization model is constructed to learn criterion weights. Using the learned criterion weights, the interpretable decision is performed. The advantages of the proposed decision model against four traditional decision models are validated by a real case study for the diagnosis of thyroid nodules. Thirty real datasets examine the competence of the proposed weighted ensemble method against mainstream ensemble methods and combination rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Usually, K is used to denote the number of data subsets in the cross validation. Considering that K has been defined as the size of the local region in this paper, here for distinction, we use Z to represent the number of data subsets in the cross validation.

References

  • Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2011). KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17, 255–287.

    Google Scholar 

  • Alelaumi, S., Wang, H., Lu, H., & Yoon, S. W. (2020). A predictive abnormality detection model using ensemble learning in stencil printing process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(9), 1560–1568.

    Google Scholar 

  • Alfaro, C., Cano-Montero, J., Gómez, J., Moguerza, J. M., & Ortega, F. (2016). A multi-stage method for content classification and opinion mining on weblog comments. Annals of Operations Research, 236, 197–213.

    Google Scholar 

  • Ardakani, A. A., Bitarafan-Rajabi, A., Mohammadi, A., Hekmat, S., Tahmasebi, A., Shiran, M. B., & Mohammadzadeh, A. (2019). CAD system based on B-mode and color Doppler sonographic features may predict if a thyroid nodule is hot or cold. European Radiology, 29, 4258–4265.

    Google Scholar 

  • Blake, C., & Merz, C. J. (1998). UCI repository of machine learning databases. http://www.ics.uci.Edu/mlearn/MLRepository.html

  • Bonami, P., Günlük, O., & Linderoth, J. (2018). Globally solving nonconvex quadratic programming problems with box constraints via integer programming method. Mathematical Programming Computation, 10, 333–382.

    Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Google Scholar 

  • Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: A survey and categorization. Information Fusion, 6, 5–20.

    Google Scholar 

  • Cappelli, C., Castellano, M., Pirola, I., Cumetti, D., Agosti, B., Gandossi, E., & Rosei, E. A. (2007). The predictive value of ultrasound findings in the management of thyroid nodules. QJM: An International Journal of Medicine, 100(1), 29–35.

  • Cevikalp, H., & Polikar, R. (2008). Local classifier weighting by quadratic programming. IEEE Transactions on Neural Networks, 19(10), 1832–1838.

    Google Scholar 

  • Chen, T. Q., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794).

  • Chong, E. K. P., & Zak, S. H. (2013). An introduction to optimization. Wiley.

    Google Scholar 

  • Costa, V. S., Farias, A. D. S., Bedregal, B., Santiago, R. H. N., & Canuto, A. M. D. P. (2018). Combining multiple algorithms in classifier ensembles using generalized mixture functions. Neurocomputing, 313, 402–414.

    Google Scholar 

  • Cruz, R. M. O., Sabourin, R., & Cavalcanti, G. D. C. (2018). Dynamic classifier selection: Recent advances and perspectives. Information Fusion, 41, 195–216.

    Google Scholar 

  • Cui, S., Wang, Y. Z., Yin, Y. Q., Cheng, T. C. E., Wang, D. J., & Zhai, M. Y. (2021). A cluster-based intelligence ensemble learning method for classification problem. Information Sciences, 560, 386–409.

    Google Scholar 

  • Dash, R., Samal, S., Dash, S., & Rautray, R. (2019). An integrated TOPSIS crow search based classifier ensemble: In application to stock index price movement prediction. Applied Soft Computing, 85, 105784.

    Google Scholar 

  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    Google Scholar 

  • Fernandes, L., Fischer, A., Júdice, J., Requejo, C., & Soares, J. (1998). A block active set algorithm for large-scale quadratic programming with box constraints. Annals of Operations Research, 81, 75–95.

    Google Scholar 

  • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.

    Google Scholar 

  • Freund, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 28, 367–378.

    Google Scholar 

  • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. American Statistical Association, 32, 675–701.

    Google Scholar 

  • Fu, C., Chang, W. J., & Liu, W. Y. (2019). Data-driven group decision making for diagnosis of thyroid nodule. Science China Information Sciences, 62, 212205:1-212205:23.

    Google Scholar 

  • Fu, C., Liu, W. Y., & Chang, W. J. (2020). Data-driven multiple criteria decision making for diagnosis of thyroid cancer. Annals of Operations Research, 293(2), 833–862.

    Google Scholar 

  • Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition, 44, 1761–1776.

    Google Scholar 

  • García, S., Zhang, Z. L., Altalhi, A., Alshomrani, S., & Herrera, F. (2018). Dynamic ensemble selection for multi-class imbalanced datasets. Information Sciences, 445–446, 22–37.

    Google Scholar 

  • Guo, M. Z., Liao, X. W., Liu, J. P., & Zhang, Q. P. (2020). Consumer preference analysis: A data-driven multiple criteria approach integrating online information. Omega, 96, 102074.

    Google Scholar 

  • Guo, M. Z., Zhang, Q. P., Liao, X. W., Chen, F. Y., & Zeng, D. D. (2021). A hybrid machine learning framework for analyzing human decision-making through learning preferences. Omega, 101, 102263.

    Google Scholar 

  • Horvath, E., Silva, C. F., Majlis, S., Rodriguez, I., Skoknic, V., Castro, A., Rojas, H., Niedmann, J. P., Madrid, A., Capdeville, F., Whittle, C., Rossi, R., Domínguez, M., & Tala, H. (2017). Prospective validation of the ultrasound based TIRADS (Thyroid Imaging Reporting and Data System) classification: Results in surgically resected thyroid nodules. European Radiology, 27(6), 2619–2628.

    Google Scholar 

  • Irpino, A., & Verde, R. (2008). Dynamic clustering of interval data using a wasserstein-based distance. Pattern Recognition Letters, 29(11), 1648–1658.

    Google Scholar 

  • Jardin, P. D. (2021). Forecasting corporate failure using ensemble of self-organizing neural networks. European Journal of Operational Research, 288, 869–888.

    Google Scholar 

  • Jiang, M., Jia, L., Chen, Z., & Chen, W. (2020). The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm. Annals of OperationsResearch. https://doi.org/10.1007/s10479-020-03690-w

    Article  Google Scholar 

  • Johnson, M., Albizri, A., & Simsek, S. (2020). Artificial intelligence in healthcare operations to enhance treatment outcomes: A framework to predict lung cancer prognosis. Annals of OperationsResearch. https://doi.org/10.1007/s10479-020-03872-6

    Article  Google Scholar 

  • Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H. B., Gróf, G., Ho, H. L., Hong, H., Chapi, K., & Prakash, I. (2019). A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323.

    Google Scholar 

  • Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239.

    Google Scholar 

  • Krannichfeldt, L. V., Wang, Y., & Hug, C. (2021). Online ensemble learning for load forecasting. IEEE Transactions on Power Systems, 36(1), 545–548.

    Google Scholar 

  • Krawczyk, B., Galar, M., Woźniak, M., Bustince, H., & Herrera, F. (2018). Dynamic ensemble selection for multi-class classification with one-class classifiers. Pattern Recognition, 83, 34–51.

    Google Scholar 

  • Krogh, A., & Vedelsby, J. (1994). Neural network ensembles, cross validation, and active learning. In Proceedings of the 7-th international conference on neural information processing systems (pp. 231–238).

  • Kuncheva, L., & Whitaker, C. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51, 181–207.

    Google Scholar 

  • Kuncheva, L. (2013). A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Transactions on Knowledge and Data Engineering, 25, 494–501.

    Google Scholar 

  • Lamy, J. B., Sekar, B., Guezennec, G., Bouaud, J., & Séroussi, B. (2019). Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach. Artificial Intelligence in Medicine, 94, 42–53.

    Google Scholar 

  • Li, T., Wang, Y., & Zhang, N. (2020). Combining probability density forecasts for power electrical loads. IEEE Transactions on Smart Grid, 11(2), 1679–1690.

    Google Scholar 

  • Li, X., Zhang, S. L., Zhang, M., & Liu, H. (2008). Rank of interval numbers based on a new distance measure. Journal of Southwest University of Science and Technology, 27(1), 87–90.

    Google Scholar 

  • Liang, Z., Xiao, Z., Wang, J., Sun, L., Li, B., Hu, Y., & Wu, Y. (2019). An improved chaos similarity model for hydrological forecasting. Journal of Hydrology, 577, 123953.

    Google Scholar 

  • Liu, Z. G., Pan, Q., Dezert, J., & Martin, A. (2018). Combination of classifiers with optimal weight based on evidential reasoning. IEEE Transactions on Fuzzy Systems, 26(3), 1217–1230.

    Google Scholar 

  • Lu, H. Y., Wang, H. F., Zhang, Q. Q., Won, D., & Yoon, S. W. (2018). A dual-tree complex wavelet transform based convolutional neural network for human thyroid medical image segmentation. In Proceedings of 2018 IEEE international conference on healthcare informatics (ICHI) (pp. 191–198).

  • Mahbobi, M., Kimiagari, S., & Vasudevan, M. (2021). Credit risk classification: An integrated predictive accuracy algorithm using artificial and deep neural networks. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04114-z

    Article  Google Scholar 

  • Mao, S. S., Jiao, L., Xiong, L., Gou, S., Chen, B., & Yeung, S. K. (2015). Weighted classifier ensemble based on quadratic form. Pattern Recognition, 48, 1688–1706.

    Google Scholar 

  • Mao, S. S., Chen, J. W., Jiao, L. C., Geou, S. P., & Wang, R. F. (2019). Maximizing diversity by transformed ensemble learning. Applied Soft Computing, 82, 105580.

    Google Scholar 

  • Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology, 590, 125275.

    Google Scholar 

  • Nguyen, T. T., Luong, A. V., Dang, M. T., Liew, A. W. C., & Mccall, J. (2020). Ensemble selection based on classifier prediction confidence. Pattern Recognition, 100, 107104.

    Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer.

    Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Razzaghi, T., Safro, I., Ewing, J., Sadrfaridpour, E., & Scott, J. D. (2019). Predictive models for bariatric surgery risks with imbalanced medical datasets. Annals of Operations Research, 280, 1–18.

    Google Scholar 

  • Şen, M. U., & Erdoğan, H. (2013). Linear classifier combination and selection using group sparse regularization and hinge loss. Pattern Recognition Letters, 34, 265–274.

    Google Scholar 

  • Seref, O., Razzaghi, T., & Xanthopoulos, P. (2017). Weighted relaxed support vector machines. Annals of Operations Research, 249, 235–271.

    Google Scholar 

  • Smits, P. C. (2002). Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote Sensing, 40(4), 801–813.

    Google Scholar 

  • Sue, K. L., Tsai, C. F., & Chiu, A. (2021). The data sampling effect on financial distress prediction by single and ensemble learning techniques. Communications in Statistics-Theory and Methods. https://doi.org/10.1080/03610926.2021.1992439

    Article  Google Scholar 

  • Tang, E. K., Suganthan, P. N., & Yao, X. (2006). An analysis of diversity measures. Machine Learning, 65, 247–271.

    Google Scholar 

  • Tang, L., Wang, S., He, K., & Wang, S. (2015). A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting. Annals of Operations Research, 234, 111–132.

    Google Scholar 

  • Wang, H., Song, B., Ye, N. R., Ren, J. L., Sun, X. L., Dai, Z. D., Zhang, Y., & Chen, B. T. (2020). Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma. European Journal of Radiology, 122, 108755.

    Google Scholar 

  • Wang, H. F., Zheng, B. C., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687–699.

    Google Scholar 

  • Wang, H. F., Won, D., & Yoon, S. W. (2019). A deep separable neural network for human tissue identification in three-dimensional optical coherence tomography images. IISE Transactions on Healthcare Systems Engineering, 9(3), 250–271.

    Google Scholar 

  • Wang, J. M. (2012). Robust optimization analysis for multiple attribute decision making problems with imprecise information. Annals of Operations Research, 197, 109–122.

    Google Scholar 

  • Wang, Y. M. (1997). Using the method of maximizing deviation to make decision for multiindices. Journal of Systems Engineering and Electronics, 8(3), 21–26.

    Google Scholar 

  • Wu, Z. B., & Chen, Y. H. (2007). The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets and Systems, 158(14), 1608–1617.

    Google Scholar 

  • Xu, C., Fu, C., Liu, W. Y., Sheng, S., & Yang, S. L. (2021). Data-driven decision model based on dynamical classifier selection. Knowledge-Based Systems, 212, 106590.

    Google Scholar 

  • Yin, X. C., Huang, K. Z., Yang, C., & Hao, H. W. (2014). Convex ensemble learning with sparsity and diversity. Information Fusion, 20, 49–59.

    Google Scholar 

  • Zhang, X., & Liu, P. (2010). Methods for multiple attribute decision-making under risk with interval numbers. International Journal of Fuzzy Systems, 12(3), 237–242.

    Google Scholar 

  • Zhang, L., & Zhou, W. D. (2011). Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 44, 97–106.

    Google Scholar 

  • Zhang, Y. Q., Cao, G., Wang, B. S., & Li, X. S. (2019). A novel ensemble method for k-nearest neighbor. Pattern Recognition, 85, 13–25.

    Google Scholar 

  • Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. CRC Press.

  • Zuo, W., Zhang, D., & Wang, K. (2008). On kernel difference-weighted k-nearest neighbor classification. Pattern Analysis and Applications, 11, 247–257.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 72101074, 72171066, and 72071061), and the Fundamental Research Funds for the Central Universities (JZ2021HGTA0139 and JZ2021HGQA0203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Chang or Weiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Chang, W. & Liu, W. Data-driven decision model based on local two-stage weighted ensemble learning. Ann Oper Res 325, 995–1028 (2023). https://doi.org/10.1007/s10479-022-04599-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04599-2

Keywords

Navigation