Skip to main content
Log in

Ranking econometric techniques using geometrical Benefit of Doubt

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A large part of economies around the world rely on stock markets. To predict stock prices or commodities, econometric techniques are used. Analysts choose the suitable econometric technique according to error measures which may create confusion, especially in the case where there is no preference amongst error measures. Therefore, there is no unique score to rank econometric techniques based on multiple error measures. To bridge this gap, we propose, a MCDM like methodology [geometrical Benefit of Doubt (BoD)] that considers econometric techniques as alternatives and error measures as criteria. A real application with 194 econometric techniques and 8 error measures is presented. The efficiency scores derived from geometrical BoD model provide better discrimination and experiemental results indicate that ARMA and ARCH models are ranked higher. The proposed geometrical BoD model is compared to similar geometrical MCDM formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using asymmetric Garch models. Applied Financial Economics, 18(15), 1201–1208.

    Google Scholar 

  • Atiya, A. F., El-Shoura, S. M., Shaheen, S. I., & El-Sherif, M. S. (1999). A comparison between neural-network forecasting techniques-case study: River flow forecasting. IEEE Transactions on Neural Networks, 10(2), 402–409.

    Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Marketing Science, 30(9), 1078–1092.

    Google Scholar 

  • Bera, A. K., & Higgins, M. L. (1993). Arch models: Properties, estimation and testing. Journal of Economic Surveys, 7(4), 305–366.

    Google Scholar 

  • Bernini, C., Guizzardi, A., & Angelini, G. (2013). Dea-like model and common weights approach for the construction of a subjective community well-being indicator. Social Indicators Research, 114(2), 405–424.

    Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.

    Google Scholar 

  • Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30(1–2), 91–107.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Google Scholar 

  • Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroeck, T. (2007). An introduction to ‘benefit of the doubt’ composite indicators. Social Indicators Research, 82(1), 111–145.

    Google Scholar 

  • Collopy, F., & Armstrong, J. S. (1992). Expert opinions about extrapolation and the mystery of the overlooked discontinuities. International Journal of Forecasting, 8(4), 575–582.

    Google Scholar 

  • Dahooie, J. H., Zavadskas, E. K., Firoozfar, H. R., Vanaki, A. S., Mohammadi, N., & Brauers, W. K. M. (2019). An improved fuzzy multimoora approach for multi-criteria decision making based on objective weighting method (CCSD) and its application to technological forecasting method selection. Engineering Applications of Artificial Intelligence, 79, 114–128.

    Google Scholar 

  • De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal of Forecasting, 22(3), 443–473.

    Google Scholar 

  • Dhamija, A. K., & Bhalla, V. K. (2010). Financial time series forecasting: Comparison of neural networks and arch models. International Research Journal of Finance and Economics, 49, 185–202.

    Google Scholar 

  • Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83–106.

    Google Scholar 

  • Doumpos, M., Zopounidis, C., & Pardalos, P. M. (2000). Multicriteria sorting methodology: Application to financial decision problems. Parallel Algorithms and Application, 15(1–2), 113–129.

    Google Scholar 

  • Doumpos, M., & JR, F. (2019). A multicriteria outranking approach for modeling corporate credit ratings: An application of the electre Tri-nC method. Omega, 82, 166–180.

    Google Scholar 

  • Quang Phuc Duong. (1988). Model selection and ranking: An Ahp approach to forecasts combination. Mathematical and Computer Modeling, 11, 282–285.

    Google Scholar 

  • Emrouznejad, A., Cabanda, E., & Gholami, R. (2010). An alternative measure of the ICT-opportunity index. Information and Management, 47(4), 246–254.

    Google Scholar 

  • Emrouznejad, A., Rostami-Tabar, B., & Petridis, K. (2016). A novel ranking procedure for forecasting approaches using data envelopment analysis. Technological Forecasting and Social Change, 111, 235–243.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the Econometric Society, 58, 987–1007.

    Google Scholar 

  • Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating time varying risk premia in the term structure: The arch-m model. Econometrica: Journal of the Econometric Society, 12, 391–407.

    Google Scholar 

  • Engle, R. F., Patton, A. J., et al. (2001). What good is a volatility model. Quantitative Finance, 1(2), 237–245.

    Google Scholar 

  • Färe, R., & Karagiannis, G. (2014). Benefit-of-the-doubt aggregation and the diet problem. Omega, 47, 33–35.

    Google Scholar 

  • Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801.

    Google Scholar 

  • Gregoriou, G. N., Sedzro, K., & Zhu, J. (2005). Hedge fund performance appraisal using data envelopment analysis. European Journal of Operational Research, 164(2), 555–571.

    Google Scholar 

  • Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a Garch(1,1)? Journal of Applied Econometrics, 20(7), 873–889.

    Google Scholar 

  • Hollingsworth, B., & Smith, P. (2003). Use of ratios in data envelopment analysis. Applied Economics Letters, 10(11), 733–735.

    Google Scholar 

  • Intepe, G., Bozdag, E., & Koc, T. (2013). The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach. Computers and Industrial Engineering, 65(2), 277–285.

    Google Scholar 

  • Liu, K., Subbarayan, S., Shoults, R. R., Manry, M. T., Kwan, C., Lewis, F. L., & Naccarino, J. (1996). Comparison of very short-term load forecasting techniques. IEEE Transactions on Power Systems, 11(2), 877–882.

    Google Scholar 

  • Lord, R., Koekkoek, R., & Van Dijk, D. (2010). A comparison of biased simulation schemes for stochastic volatility models. Quantitative Finance, 10(2), 177–194.

    Google Scholar 

  • Moghram, I., & Rahman, S. (1989). Analysis and evaluation of five short-term load forecasting techniques. IEEE Transactions on Power Systems, 4(4), 1484–1491.

    Google Scholar 

  • Morita, H., Hirokawa, K., & Zhu, J. (2005). A slack-based measure of efficiency in context-dependent data envelopment analysis. Omega, 33(4), 357–362.

    Google Scholar 

  • Pagan, A. R., & Schwert, G. W. (1990). Alternative models for conditional stock volatility. Journal of Econometrics, 45(1), 267–290.

    Google Scholar 

  • Pesaran, M. H., & Skouras, S. Decision-based methods for forecast evaluation. In A companion to economic forecasting (pp. 241–267).

  • Peters, J.-P. (2001). Estimating and forecasting volatility of stock indices using asymmetric Garch models and (skewed) student-t densities. Preprint, University of Liege, Belgium, 3, 19–34.

    Google Scholar 

  • Petridis, K., Petridis, N. E., Emrouznejad, A., & Abdelaziz, F. B. (2021). Prioritizing of volatility models: A computational analysis using data envelopment analysis. International Transactions in Operational Research.

  • Pezzo, R., & Uberti, M. (2006). Approaches to forecasting volatility: Models and their performances for emerging equity markets. Chaos, Solitons and Fractals, 29(3), 556–565.

    Google Scholar 

  • Pong, S., Shackleton, M. B., Taylor, S. J., & Xu, X. (2004). Forecasting currency volatility: A comparison of implied volatilities and AR(FI) MA models. Journal of Banking and Finance, 28(10), 2541–2563.

    Google Scholar 

  • Poon, S.-H., & Granger, C. W. J. (2003). Forecasting volatility in financial markets: A review. Journal of Economic Literature, 41(2), 478–539.

    Google Scholar 

  • Rogge, N. (2018). Composite indicators as generalized benefit-of-the-doubt weighted averages. European Journal of Operational Research, 267(1), 381–392.

    Google Scholar 

  • Rogge, N., De Jaeger, S., & Lavigne, C. (2017). Waste performance of nuts 2-regions in the EU: A conditional directional distance benefit-of-the-doubt model. Ecological Economics, 139, 19–32.

    Google Scholar 

  • Schwert, G. W. (1990). Stock volatility and the crash of ’87. Review of Financial Studies, 3(1), 77–102.

    Google Scholar 

  • Sfetsos, A. (2000). A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy, 21(1), 23–35.

    Google Scholar 

  • Taylor, S. J. (2007). Modelling financial time series.

  • Thomakos, D. D., & Guerard, J. B., Jr. (2004). Naıve, Arima, nonparametric, transfer function and Var models: A comparison of forecasting performance. International Journal of Forecasting, 20(1), 53–67.

    Google Scholar 

  • Tofallis, C. (2014). On constructing a composite indicator with multiplicative aggregation and the avoidance of zero weights in DEA. Journal of the Operational Research Society, 65(5), 791–792.

    Google Scholar 

  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509.

    Google Scholar 

  • Van Puyenbroeck, T., & Rogge, N. (2017). Geometric mean quantity index numbers with benefit-of-the-doubt weights. European Journal of Operational Research, 256(3), 1004–1014.

    Google Scholar 

  • Verbunt, P., & Rogge, N. (2018). Geometric composite indicators with compromise benefit-of-the-doubt weights. European Journal of Operational Research, 264(1), 388–401.

    Google Scholar 

  • Xu, B., & Ouenniche, J. (2011). A multidimensional framework for performance evaluation of forecasting models: Context-dependent DEA. Applied Financial Economics, 21(24), 1873–1890.

    Google Scholar 

  • Yokuma, J. T., & Armstrong, J. S. (1995). Beyond accuracy: Comparison of criteria used to select forecasting methods. International Journal of Forecasting, 11(4), 591–597.

    Google Scholar 

  • Jun, Yu., & Meyer, R. (2006). Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econometric Reviews, 25(2–3), 361–384.

    Google Scholar 

  • Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931–955.

    Google Scholar 

  • Zhou, P., Ang, B. W., & Zhou, D. Q. (2010). Weighting and aggregation in composite indicator construction: A multiplicative optimization approach. Social Indicators Research, 96(1), 169–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Masri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petridis, K., Petridis, N.E., Abdelaziz, F.B. et al. Ranking econometric techniques using geometrical Benefit of Doubt. Ann Oper Res 330, 411–430 (2023). https://doi.org/10.1007/s10479-022-04573-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04573-y

Keywords

Navigation