Skip to main content
Log in

Green channel coordination under asymmetric information

  • S.I.: Information-Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The increased environmental awareness of consumers has led supply chains (SC) to green their operations. To extract a higher portion from the expanded demand due to greening activities, SC parties may hide key information regarding their green activities. This paper investigates the channel coordination problem in a green SC consisting of a manufacturer who sells a green product through a retailer. Both parties may involve in greening operations to expand an environmental-aware market; however, the retailer is privy to the information about his green sales effort. The analysis of the first-best outcome characterizes the conditions for (i) hold-up problem under which the retailer benefits from free ride on the manufacturer's greening operations effort, (ii) commitment strategy from the retailer to cover for the market expansion due to the manufacturer’s underinvestment in greening operations, and (iii) synergy in greening efforts. We then solve for the optimal incentive contracts under asymmetric information. Our analysis suggests that the manufacturer can include her greening effort in the contract to work as an incentive-fee; the higher level of greening effort by the manufacturer incentivizes the retailer to increase his green sales effort. We also show that the wholesale price term works as a screening tool to avoid the low efficient retailer from mimicking the high efficient one. Finally, we show that information asymmetry reduces the social welfare in a green market; it leads to a higher market price and a lower greening effort level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Refer to https://hbr.org/2019/06/research-actually-consumers-do-buy-sustainable-products.

  2. Refer to https://sustainablebrands.com/read/press-release/the-disruptors-sustainable-saving-at-walmart.

  3. Refer to https://learn.g2.com/green-marketing.

  4. Similar to Swami & Shah (2013), the market demand is negatively related to the retail price but positively related to the greening efforts of both the retailer and the manufacturer.

  5. If the retailer claims his type as \(H\) then he has to pick contract \(H:\left( {w_{H} ,\tau_{mH} } \right)\) and if he claims his type as \(L \) then he has to pick contract \(L:\left( {w_{L} ,\tau_{mL} } \right)\). However, the retailer can make a false claim and therefore it is necessary to consider appropriate feature in the model to prevent the retailer to make false claims.

  6. Previous works have considered social welfare as the function of the consumer welfare and the environmental impacts (Choi and Luo, 2019). Hence, any activity that can enhance these two factors contributes to the increase of the social welfare.

References

  • Akan, M., Ata, B., & Lariviere, M. A. (2011). Asymmetric information and economies of scale in service contracting. Manufacturing and Service Operations Management, 13(1), 58–72.

    Google Scholar 

  • Babich, V., Li, H., Ritchken, P., & Wang, Y. (2012). Contracting with asymmetric demand information in supply chains. European Journal of Operational Research, 217(2), 333–341.

    Google Scholar 

  • Basiri, Z., & Heydari, J. (2017). A mathematical model for green supply chain coordination with substitutable products. Journal of Cleaner Production, 145, 232–249.

    Google Scholar 

  • Burnetas, A., Gilbert, S. M., & Smith, C. (2005). Quantity discounts in single period supply contracts with asymmetric demand information. IIE Transactions, 39(5), 465–479.

    Google Scholar 

  • Cachon, G. P. (2003). Supply Chain Management: Design, Coordination and Operation. International Journal of Production Economics, 11, 227–339.

    Google Scholar 

  • Cachon, G. P., & Zhang, F. (2006). Procuring fast delivery: Sole sourcing with information asymmetry. Management Science, 52(6), 881–896.

    Google Scholar 

  • Cakanyıldırım, M., Feng, Q., Gan, X., & Sethi, S. P. (2012). Contracting and coordination under asymmetric production cost information. Production and Operations Management, 21(2), 345–360.

    Google Scholar 

  • Cao, E., Ma, Y., Wan, C., & Lai, M. (2013). Contracting with asymmetric cost information in a dual-channel supply chain. Operations Research Letters, 41(4), 410–414.

    Google Scholar 

  • Chen, W., & Li, L. (2020). Incentive contracts for green building production with asymmetric information. International Journal of Production Research. https://doi.org/10.1080/00207543.2020.1727047

    Article  Google Scholar 

  • Chiu, C., Choi, T. M., Hao, G., & Li, X. (2015). Innovative menu of contracts for coordinating a supply chain with multiple mean-variance retailers. European Journal of Operational Research, 246, 815–826.

    Google Scholar 

  • Choi, T. M. (2013). Local sourcing and fashion quick response system: The impacts of carbon footprint tax. Transportation Research Part e: Logistics and Transportation Review, 55(1), 43–54.

    Google Scholar 

  • Choi, T. M. (2019). Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes. Transportation Research Part e: Logistics and Transportation Review, 133, 135–152.

    Google Scholar 

  • Corbett, C. J., & de Groote, X. (2000). A supplier’s optimal quantity discount policy under asymmetric information. Management Science, 46(3), 444–450.

    Google Scholar 

  • Corbett, C. J., Zhou, D., & Tang, C. S. (2004). Designing Supply Contracts : Contract type and information asymmetry. Management Science, 50(4), 550–559.

    Google Scholar 

  • Fang, X., Ru, J., & Wang, Y. (2014). Optimal procurement design of an assembly supply chain with information asymmetry. Production and Operations Management, 23(12), 2075–2088.

    Google Scholar 

  • Feng, Q., Lai, G., & Lu, L. X. (2015). Dynamic bargaining in a supply chain with asymmetric demand information. Management Science, 61(2), 301–315.

    Google Scholar 

  • Gan, X., Sethi, S. P., & Yan, H. (2004). Coordination of supply chains with risk-averse agents. Production and Operations Management, 13(2), 135–149.

    Google Scholar 

  • Gan, X., Sethi, S. P., & Yan, H. (2009). Channel coordination with a risk-neutral supplier and a downside-risk-averse retailer. Production and Operations Management, 14(1), 80–89.

    Google Scholar 

  • Giovanni, P. D. (2016). Closed-loop supply chain coordination through incentives with asymmetric information. Annals of Operations Research, 253(1), 133–167.

    Google Scholar 

  • Gümüş, M. (2014). With or without forecast sharing: Competition and credibility under information asymmetry. Production and Operations Management, 23(10), 1732–1747.

    Google Scholar 

  • Guo, S., Shen, B., Choi, T. M., & Jung, S. (2017). A review on supply chain contracts in reverse logistics: Supply chain structures and channel leaderships. Journal of Cleaner Production, 144, 387–402.

    Google Scholar 

  • Ha, A. Y. (2001). Supplier-buyer contracting: Asymmetric cost information and cutoff level policy for buyer participation. Naval Research Logistics, 48(1), 41–64.

    Google Scholar 

  • Heydari, J., Chaharsooghi, S. K., & Alipour, L. (2009). Animation supply chain modelling and diagnosis: A case study in animation industry of Iran. International Journal of Business Performance and Supply Chain Modelling, 1(4), 319–332.

    Google Scholar 

  • Hong, Z., & Guo, X. (2019). Green product supply chain contracts considering environmental responsibilities. Omega, 83, 155–166.

    Google Scholar 

  • Hosseini, M. M. (2020). A decision support contract for cost-quality trade-off in projects under information asymmetry. International Journal of Business and Management, 15, 4.

    Google Scholar 

  • Hosseini-Motlagh, S. M., Nouri-Harzvili, M., Choi, T. M., & Ebrahimi, S. (2019). Reverse supply chain systems optimization with dual channel and demand disruptions: Sustainability, CSR investment and pricing coordination. Information Sciences, 503, 606–634.

    Google Scholar 

  • Kautish, P. (2016). Volkswagen AG: Defeat device or device defeat? IMT Case Journal, 7, 19–30.

    Google Scholar 

  • Kerkkamp, R. B. O., Heuvel, W. V. D., & Wagelmans, A. P. M. (2018). Two-echelon supply chain coordination under information asymmetry with multiple types. Omega, 76, 137–159.

    Google Scholar 

  • Ketokivi, M., & Choi, T. (2014). Renaissance of case research as a scientific method. Journal of Operations Management, 32(5), 232–240.

    Google Scholar 

  • Kim, D., & Kim, S. (2017). Sustainable supply chain based on news articles and sustainability reports: Text mining with Leximancer and DICTION. Sustainability, 9(6), 1008.

    Google Scholar 

  • Kostamis, D., & Duenyas, I. (2011). Purchasing under asymmetric demand and cost information: When is more private information better? Operations Research, 59(4), 914–928.

    Google Scholar 

  • Laffont, J.-J., & Martimort, D. (2009). The theory of incentives: The principal-agent model. Princeton University Press.

    Google Scholar 

  • Li, G., Li, L., Choi, T. M., & Sethi, S. P. (2020a). Green supply chain management in Chinese firms: Innovative measures and the moderating role of quick response technology. Journal of Operations Management, 66(7–8), 958–988.

    Google Scholar 

  • Li, G., Lim, M. K., & Wang, Z. (2020b). Stakeholders, green manufacturing, and practice performance: Empirical evidence from Chinese fashion businesses. Annals of Operations Research, 290(1), 961–982.

    Google Scholar 

  • Li, G., Liu, M., Bian, Y., & Sethi, S. P. (2020c). Guarding against Disruption Risk by contracting under information asymmetry. Decision Sciences, 51(6), 1521–1559.

    Google Scholar 

  • Li, G., Zheng, H., Sethi, S. P., & Guan, X. (2020d). Inducing downstream information sharing via manufacturer information acquisition and retailer subsidy. Decision Sciences, 51(3), 691–719.

    Google Scholar 

  • Li, H., & Cao, E. (2021). Competitive crowdfunding under asymmetric quality information. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03939-y

    Article  Google Scholar 

  • Li, Y., Xu, X., Zhao, X., Yeung, J. H. Y., & Ye, F. (2012). Supply chain coordination with controllable lead time and asymmetric information. European Journal of Operational Research, 217(1), 108–119.

    Google Scholar 

  • Liu, A., Luo, S., Mou, J., & Qiu, H. (2021). The antagonism and cohesion of the upstream supply chain under information asymmetry. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03881-5

    Article  Google Scholar 

  • Liu, H., Sun, S., Lei, M., Leong, G. K., & Deng, H. (2016). Research on cost information sharing and channel choice in a dual-channel supply Chain. Mathematical Problems in Engineering, 2016, 4368326.

    Google Scholar 

  • Liu, Y., Li, J., Quan, B., & Yang, J. (2019). Decision analysis and coordination of two-stage supply chain considering cost information asymmetry of corporate social responsibility. Journal of Cleaner Production, 228, 1073–1087.

    Google Scholar 

  • Ma, P., Shang, J., & Wang, H. (2017). Enhancing corporate social responsibility: Contract design under information asymmetry. Omega, 67, 19–30.

    Google Scholar 

  • Ma, X., Wang, S., Islam, S. M. N., & Liu, X. (2018). Coordinating a three-echelon fresh agricultural products supply chain considering freshness-keeping effort with asymmetric information. Applied Mathematical Modelling, 67, 337–356.

    Google Scholar 

  • Mavlanova, T., Benbunan-Fich, R., & Koufaris, M. (2012). Signaling theory and information asymmetry in online commerce. Information and Management, 49(5), 240–247.

    Google Scholar 

  • Mobini, Z., van den Heuvel, W., & Wagelmans, A. (2019). Designing multi-period supply contracts in a two-echelon supply chain with asymmetric information. European Journal of Operational Research, 277(2), 542–560.

    Google Scholar 

  • Myerson, R. B. (1982). Optimal coordination mechanisms in generalized principal–agent problems. Journal of Mathematical Economics, 10(1), 67–81.

    Google Scholar 

  • Nazerzadeh, H., & Perakis, G. (2016). Technical note: Nonlinear pricing competition with private capacity information. Operations Research, 64(2), 329–340.

    Google Scholar 

  • Nikoofal, M. E., & Gümüş, M. (2020). Value of audit for supply chains with hidden action and information. European Journal of Operational Research, 285(3), 902–915.

    Google Scholar 

  • Rahbar, E., & Wahid, N. A. (2011). Investigation of green marketing tools’ effect on consumers’ purchase behavior. Business Strategy Series, 12, 73–83.

    Google Scholar 

  • Raza, S. A., & Govindaluri, S. M. (2019). Greening and price differentiation coordination in a supply chain with partial demand information and cannibalization. Journal of Cleaner Production, 229, 706–726.

    Google Scholar 

  • Sane-Zerang, E., Razmi, J., & Taleizadeh, A. A. (2019). Coordination in a closed-loop supply chain under asymmetric and symmetric information with sales effort-dependent demand. Journal of Business Economics, 90, 303–334.

    Google Scholar 

  • Savaskan, R. C., & Van Wassenhove, L. N. (2006). Reverse channel design: The case of competing retailers. Management Science, 52(1), 1–14.

    Google Scholar 

  • Shen, B., Choi, T. M., & Minner, S. (2018). A review on supply chain contracting with information considerations: Information updating and information asymmetry. International Journal of Production Research, 47(21), 6145–6158.

    Google Scholar 

  • Shen, B., Choi, T. M., & Minner, S. (2019). A review on supply chain contracting with information considerations: Information updating and information asymmetry. International Journal of Production Research, 57(15–16), 4898–4936.

    Google Scholar 

  • Swami, S., & Shah, J. (2013). Channel coordination in green supply chain management. Journal of the Operational Research Society, 64(3), 336–351.

    Google Scholar 

  • Vosooghidizaji, M., Taghipour, A., & Canel-Depitre, B. (2019). Supply chain coordination under information asymmetry: A review. International Journal of Production Research, 58(6), 1805–1834.

    Google Scholar 

  • Wang, K., Zhao, R., & Chen, H. (2018). Optimal credit period and green consumption policies with cash-credit payments under asymmetric information. Journal of Cleaner Production, 205, 706–720.

    Google Scholar 

  • Wang, Q., & He, L. (2018). Incentive strategies for low-carbon supply chains with asymmetric information of carbon reduction efficiency. International Journal of Environmental Research and Public Health, 15(12), 2736.

    Google Scholar 

  • Yang, D., Chen, Z., & Nie, P. (2016). Output subsidy of renewable energy power industry under asymmetric information. Energy, 117, 291–299.

    Google Scholar 

  • Yang, D., Xiao, T., Choi, T. M., & Cheng, T. (2018a). Optimal reservation pricing strategy for a fashion supply chain with forecast update and asymmetric cost information. International Journal of Production Research, 56(5), 1960–1981.

    Google Scholar 

  • Yang, R., Tang, W., Dai, R., & Zhang, J. (2018b). Contract design in reverse recycling supply chain with waste cooking oil under asymmetric cost information. Journal of Cleaner Production, 201, 61–77.

    Google Scholar 

  • Yoon, J., Talluri, S., & Rosales, C. (2019). Procurement decisions and information sharing under multi-tier disruption risk in a supply chain. International Journal of Production Research, 58(7), 3263–3283.

    Google Scholar 

  • Yuan, B., Gu, B., Guo, J., Xia, L., & Xu, C. (2018). The optimal decisions for a sustainable supply chain with carbon information asymmetry under. Sustainability, 10(4), 1002.

    Google Scholar 

  • Zhang, T., Choi, T. M., & Zhu, X. (2018). Optimal green product’s pricing and level of sustainability in supply chains: Effects of information and coordination. Annals of Operations Research. https://doi.org/10.1007/s10479-018-3084-8

    Article  Google Scholar 

  • Zhao, Y., Choi, T. M., Cheng, T. C. E., & Wang, S. (2014). Mean-risk analysis of wholesale price contracts with stochastic price-dependent demand. Annals of Operations Research., 257(1–2), 491–518.

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Editors for their encouragements and two anonymous referees for all their invaluable comments and suggestions that have helped us significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Heydari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

The total channel profit under centralized setting would be:

$$ \mathop {\max }\limits_{{\tau_{m} ,\tau_{r} ,p}} \;\;\Pi_{C} = \Pi_{r} + \Pi_{m} = \left( {p - c} \right)\left( {\gamma - kp + \alpha_{m} \tau_{m} + \alpha_{r} \tau_{r} } \right) - \beta_{m} \tau_{m}^{2} - \beta_{r} \tau_{r}^{2} $$
(A.1)

Due to the concavity of the objective function (see Swami & Shah, 2013), the first order conditions result in the following optimal solutions:

$$ \tau_{m}^{C} = \frac{{\beta_{r} \alpha_{m} }}{{\left( {4\beta_{r} \beta_{m} k - \beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} \times \left( {\gamma - ck} \right) $$
(A.2)
$$ \tau_{r}^{C} = \frac{{\beta_{m} \alpha_{r} }}{{\left( {4\beta_{r} \beta_{m} k - \beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} \times \left( {\gamma - ck} \right) $$
(A.3)
$$ p^{C} = c + \frac{{2\beta_{r} \beta_{m} \left( {\gamma - ck} \right)}}{{\left( {4\beta_{r} \beta_{m} k - \beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} $$
(A.4)

1.2 Proof of Lemma 1

The profit of the retailer is:

$$ \Pi_{r} \left( {p,\tau_{r} |w} \right) = \left( {p - w} \right) \times \left( {\gamma - kp + \alpha_{m} \tau_{m} + \alpha_{r} \tau_{r} } \right) - \beta_{r} \tau_{r}^{2} $$
(A.5)

Due to the concavity of the above objective function, the first best conditions for \( \tau_{r}^{{\text{d}}}\) and \(p^{{\text{d}}}\) yield:

$$ \tau_{r}^{{\text{d}}} = \frac{{\left( {\gamma - kw + \alpha_{m} \tau_{m} } \right)\alpha_{r} }}{{2\beta_{r} - \alpha_{r}^{2} }} $$
(A.6)
$$ p^{{\text{d}}} = \frac{1}{2k}\left( {kw + \gamma + \alpha_{m} \tau_{m} + \alpha_{r} \tau_{r}^{{\text{d}}} } \right) $$
(A.7)

Proof of Proposition 2. Applying backward induction, we first solve the retailer’s profit considering the manufacturer’s decisions are known. i.e.:

$$ \frac{{\partial \Pi_{r} }}{\partial p} = 0 $$
(A.8)
$$ \frac{{\partial \Pi_{r} }}{{\partial \tau_{r} }} = 0 $$
(A.9)

So we have:

$$ p = \frac{{ - w\alpha_{r}^{2} + 2\beta_{r} \gamma + 2\alpha_{m} \beta_{r} \tau_{m} + 2\beta_{r} kw}}{{\left( {4\beta_{r} k - \alpha_{r}^{2} } \right)}} $$
(A.10)
$$ \tau_{r} = \frac{{\alpha_{r} \left( {\gamma + \alpha_{m} \tau_{m} - kw} \right)}}{{\left( {4\beta_{r} k - \alpha_{r}^{2} } \right)}} $$
(A.11)

Now we solve the manufacturer’s optimal response function. Plugging the found solutions into \(\Pi_{m}\), we have:

$$ \Pi_{m} \!=\! \frac{{\left( {\beta_{m} \alpha_{r}^{2} \tau_{m}^{2} \!-\! 2\beta_{r} k^{2} w^{2} \!+\! 2\beta_{r} ck^{2} w \!-\! 4\beta_{m} \beta_{r} k\tau_{m}^{2} \!+\! 2\alpha_{m} \beta_{r} k\tau_{m} w \!-\! 2\alpha_{m} \beta_{r} ck\tau_{m} \!+\! 2\beta_{r} \gamma kw \!-\! 2\beta_{r} c\gamma k} \right)}}{{\left( {4\beta_{r} k \!-\! \alpha_{r}^{2} } \right)}} $$
(A.12)

Applying the first-best conditions for \(\Pi_{m}\), we obtain the optimal values of \(w\) and \(\tau_{m}\):

$$ w^{d} = ck + \frac{{\left( {4\beta_{m} \beta_{r} k - \beta_{m} \alpha_{r}^{2} } \right)}}{{\left( {8\beta_{m} \beta_{r} k - 2\beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} \times \left( {\gamma - ck} \right) $$
(A.13)
$$ \tau_{m}^{d} = \frac{{\beta_{r} \alpha_{m} }}{{\left( {8\beta_{m} \beta_{r} k - 2\beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} \times \left( {\gamma - ck} \right) $$
(A.14)

Inserting the extracted equilibriums into equations (A.10) and (A.11) we get:

$$ p^{d} = ck + \frac{{\left( {6\beta_{m} \beta_{r} k - \beta_{m} \alpha_{r}^{2} } \right)}}{{\left( {8\beta_{m} \beta_{r} k - 2\beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} \times \left( {\gamma - ck} \right) $$
(A.15)
$$ \tau_{r}^{d} = \frac{{\beta_{m} \alpha_{r} }}{{\left( {8\beta_{m} \beta_{r} k - 2\beta_{m} \alpha_{r}^{2} - \beta_{r} \alpha_{m}^{2} } \right)}} \times \left( {\gamma - ck} \right) $$
(A.16)

Proof of Corollary 1. To study the impact of \(\beta_{r}\) and \(\beta_{m}\) on the manufacturer’s greening effort, we need to find \(\partial \tau_{m\theta } /\partial \beta_{r}\) and \(\partial \tau_{m\theta } /\partial \beta_{m}\), respectively;

$$ \frac{{\partial \tau_{m\theta } }}{{\partial \beta_{r} }} = - \frac{{2\left( {\gamma - c} \right)\alpha_{m} \beta_{m} \alpha_{r}^{2} }}{{\left( {\left( {2\alpha_{r}^{2} - 8\beta_{r} } \right)\beta_{m} + \beta_{r} \alpha_{m}^{2} } \right)^{2} }} < 0 $$
(A.17)
$$ \frac{{\partial \tau_{m\theta } }}{{\partial \beta_{m} }} = \frac{{2\beta_{r} \alpha_{m} \left( {\gamma - c} \right)\left( {\alpha_{r}^{2} - 4\beta_{r} } \right)}}{{\left( {\left( {\alpha_{m}^{2} - 8\beta_{m} } \right)\beta_{r} + 2\beta_{m} \alpha_{r}^{2} } \right)^{2} }} $$
(A.18)

Note that, from Eq. (A.17), we have \(\partial \tau_{m\theta } /\partial \beta_{r} < 0\). However, from Eq. (A.18), one can verify that \(\partial \tau_{m\theta } /\partial \beta_{m} \ge 0\) if \(\alpha_{r}^{2} \ge 4\beta_{r}\), or \(\alpha_{r} \ge 2\sqrt {\beta_{r} }\).

Similarly, we need to find \(\partial \tau_{r\theta } /\partial \beta_{m}\) and \(\partial \tau_{r\theta } /\partial \beta_{r}\), respectively;

$$ \frac{{\partial \tau_{r\theta } }}{{\partial \beta_{m} }} = - \frac{{\left( {\gamma - c} \right)\alpha_{r} \beta_{r} \alpha_{m}^{2} }}{{\left( {\left( {\alpha_{m}^{2} - 8\beta_{m} } \right)\beta_{r} + 2\beta_{m} \alpha_{r}^{2} } \right)^{2} }} < 0 $$
(A.19)
$$ \frac{{\partial \tau_{r\theta } }}{{\partial \beta_{r} }} = \frac{{\beta_{m} \alpha_{r} \left( {\gamma - c} \right)\left( {\alpha_{m}^{2} - 8\beta_{m} } \right)}}{{\left( {\left( {2\alpha_{r}^{2} - 8\beta_{r} } \right)\beta_{m} + \beta_{r} \alpha_{m}^{2} } \right)^{2} }} $$
(A.20)

Note that, therefore, from Eq. (A.19), we have \(\partial \tau_{m\theta } /\partial \beta_{r} < 0\). However, from Eq. (A.20), one can verify that \(\partial \tau_{r\theta } /\partial \beta_{r} \ge 0\) if \(\alpha_{m}^{2} \ge 8\beta_{m}\), or \(\alpha_{m} \ge 2\sqrt {2\beta_{m} }\).

Proof of Proposition 3. The problem can be written as follows:

$$ \max E\left( {\Pi_{m} } \right) = v\left( {\begin{array}{*{20}c} {\left( {w_{H} - c} \right) \times \left( {\begin{array}{*{20}c} {\gamma - kp_{HH} + } \\ {\alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \\ \end{array} } \right)} \\ { - \beta_{m} \tau_{mH}^{2} } \\ \end{array} } \right) + \left( {1 - v} \right)\left( {\begin{array}{*{20}c} {\left( {w_{L} - c} \right) \times \left( {\begin{array}{*{20}c} {\gamma - kp_{LL} + } \\ {\alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \\ \end{array} } \right)} \\ { - \beta_{m} \tau_{mL}^{2} } \\ \end{array} } \right) $$
(A.21)

s.t.

$$ \left( {p_{HH} - w_{H} } \right) \times \left( {\gamma - kp_{HH} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) - \beta_{r}^{H} \tau_{rH}^{2} \ge \left( {p_{HL} - w_{L} } \right) \times \left( {\gamma - kp_{HL} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rH} } \right) - \beta_{r}^{H} \tau_{rH}^{2} $$
(A.22)
$$ \left( {p_{LL} - w_{L} } \right) \times \left( {\gamma - kp_{LL} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) - \beta_{r}^{L} \tau_{rL}^{2} \ge \left( {p_{LH} - w_{H} } \right) \times \left( {\gamma - kp_{LH} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rL} } \right) - \beta_{r}^{L} \tau_{rL}^{2} $$
(A.23)
$$ \left( {p_{HH} - w_{H} } \right) \times \left( {\gamma - kp_{HH} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) - \beta_{r}^{H} \tau_{rH}^{2} \ge 0 $$
(A.24)
$$ \left( {p_{LL} - w_{L} } \right) \times \left( {\gamma - kp_{LL} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) - \beta_{r}^{L} \tau_{rL}^{2} \ge 0 $$
(A.25)
$$ p_{HH} ,p_{LL} ,\tau_{rH} ,\tau_{rL} ,\tau_{mH} ,\tau_{mL} ,w_{H} ,w_{L} \in {\mathbb{R}}^{ + } $$

For the sake of simplicity and based on \(\left( {p_{HH}^{*} } \right) = argmax\Pi_{rHH}\) and \(\left( {p_{LL}^{*} } \right) = argmax\Pi_{rLL}\), we have:

$$ \left\{ {\begin{array}{*{20}c} {\frac{{\partial \Pi_{rHH} }}{{\partial p_{HH} }} = 0} \\ {\frac{{\partial \Pi_{rLL} }}{{\partial p_{LL} }} = 0} \\ \end{array} } \right., $$
(A.26)

Thus, computing the first order derivative over market price and setting it equal to zero, we derive:

$$ p_{HH} = \frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) $$
(A.27)
$$ p_{LL} = \frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) $$
(A.28)

Similarly, we define:

$$ \left\{ {\begin{array}{*{20}c} {\frac{{\partial \Pi_{rHL} }}{{\partial p_{HL} }} = 0} \\ {\frac{{\partial \Pi_{rLH} }}{{\partial p_{LH} }} = 0} \\ \end{array} } \right., $$
(A.29)

So, we have:

$$ p_{HL} = \frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rH} } \right) $$
(A.30)
$$ p_{LH} = \frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rL} } \right) $$
(A.31)

Plugging \(p_{HH}\), \(p_{HL}\), \(p_{LL}\), \(p_{LH}\) into \(\Pi_{rHH}\), \(\Pi_{rHL}\), \(\Pi_{rLL}\), \(\Pi_{rLH}\), \(\Pi_{mH}\) and \(\Pi_{mL}\), we derive the retailer and the manufacturer’s profit functions:

$$ \Pi_{rHH} = \left( {\frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) - {\text{w}}_{H} } \right) \times \left( {\gamma - \frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) + {\upalpha }_{m} \tau_{mH} + {\upalpha }_{r} \tau_{rH} } \right) - \beta_{r} \tau_{rH}^{2} $$
(A.32)
$$ \Pi_{rHL} = \left( {\frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rH} } \right) - w_{L} } \right) \times \left( {\gamma - \frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rH} } \right) + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rH} } \right) - \beta_{r} \tau_{rH}^{2} $$
(A.33)
$$ \Pi_{rLL} = \left( {\frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) - w_{L} } \right) \times \left( {\gamma - \frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) - \beta_{r} \tau_{rL}^{2} $$
(A.34)
$$ \Pi_{rLH} = \left( {\frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rL} } \right) - w_{H} } \right) \times \left( {\gamma - \frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rL} } \right) + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rL} } \right) - \beta_{r} \tau_{rL}^{2} $$
(A.35)
$$ \Pi_{mH} = \left( {w_{H} - c} \right) \times \left( {\gamma - \frac{1}{2k}\left( {\gamma + kw_{H} + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) + \alpha_{m} \tau_{mH} + \alpha_{r} \tau_{rH} } \right) - \beta_{m} \tau_{mH}^{2} $$
(A.36)
$$ \Pi_{mL} = \left( {w_{L} - c} \right) \times \left( {\gamma - \frac{1}{2k}\left( {\gamma + kw_{L} + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) + \alpha_{m} \tau_{mL} + \alpha_{r} \tau_{rL} } \right) - \beta_{m} \tau_{mL}^{2} $$
(A.37)

Let \(\lambda 1\), \(\lambda 2\), \(\lambda 3\), \(\lambda 4\) denote the Lagrange multiplier of the participation constraints and the incentive compatibility constraints and \(l\) represent the Lagrange function, we have:

$$ l = v\pi_{mH} + \left( {1 - v} \right)\pi_{mL} + M_{f} \lambda_{f} $$
(A.38)

We first set all the Lagrange multipliers to zero and derive the optimal solutions from first-order partial derivatives of the first fourth equations of the KKT condition (obtain optimal solutions). Then we check the other KKT conditions to see whether the obtained solution is feasible. Thus, we have:

$$ l = v\pi_{mH} + \left( {1 - v} \right)\pi_{mL} $$
(A.39)

The KKT condition will be:

$$ \left\{ {\begin{array}{*{20}c} {\frac{\partial l}{{\partial w_{H} }} = 0 } \\ {\frac{\partial l}{{\partial w_{L} }} = 0} \\ {\frac{\partial l}{{\partial \tau_{mH} }} = 0} \\ {\frac{\partial l}{{\partial \tau_{mL} }} = 0} \\ {M_{f} \lambda_{f} = 0} \\ {\lambda_{f} \ge 0} \\ {M_{f} \ge 0} \\ {f = 1,2,3,4} \\ \end{array} } \right. $$
(A.40)

As mentioned earlier, because of the complexity of the model, closed-forms are derived where we fix some parameters to specific values. Hence, the parameters that we listed in the numerical illustration section are fixed firstly and then, we checked the KKT condition. In doing so, the values in Table

Table 8 Values obtained from KKT conditions

8 are obtained:

Since we set all the Lagrange multipliers to zero, all the constraints must be positive or zero (\(M_{f} \ge 0\)). However, the first constraint is negative, so the results are infeasible. For the second round, we add the first constraint to the Lagrange function. Thus we have:

$$ l = v\pi_{mH} + \left( {1 - v} \right)\pi_{mL} + M_{1} \lambda_{1} $$

Applying KKT conditions we can obtain values illustrated in Table

Table 9 Values obtained from KKT conditions

9.

The obtained results apply in KKT conditions; thus, they are both optimal and feasible. In fact, with this method, since the complexity of the proposed model makes it hard or impossible to check all the KKT conditions, we search for the feasible solution in the optimal area.

Finally, from the KKT conditions with given Lagrange multipliers (\(\lambda_{1} = 0.017,\lambda_{2} = \lambda_{3} = \lambda_{4} = 0\)), we can obtain the closed-form expressions:

$$ \frac{\partial l}{{\partial w_{H} }} = v\left( {\frac{kc}{2} + \frac{\gamma }{2} - kw_{H} + \frac{{\alpha_{m} \tau_{mH} }}{2} + \frac{{\alpha_{r} \tau_{rH} }}{2}} \right) - \lambda 1\left( {\frac{\gamma }{2k} - \frac{{w_{H} }}{2} + \frac{{\alpha_{m} \tau_{mH} }}{2k} + \frac{{\alpha_{r} \tau_{rH} }}{2k}} \right) = 0 $$
(A.41)
$$ \frac{\partial l}{{\partial w_{L} }} = - \left( {v - 1} \right)\left( {\frac{kc}{2} + \frac{\gamma }{2} - kw_{L} + \frac{{\alpha_{m} \tau_{mL} }}{2} + \frac{{\alpha_{r} \tau_{rL} }}{2}} \right) + \lambda 1\left( {\frac{\gamma }{2k} - \frac{{w_{L} }}{2} + \frac{{\alpha_{m} \tau_{mL} }}{2k} + \frac{{\alpha_{r} \tau_{rH} }}{2k}} \right) = 0 $$
(A.42)
$$ \frac{\partial l}{{\partial \tau_{mH} }} = - v\left( {2\beta_{m} \tau_{mH} + \alpha_{m} k\left( {c - w_{H} } \right)} \right) + \alpha_{m} \lambda 1\left( {\frac{\gamma }{2k} - \frac{{w_{H} }}{2} + \frac{{\alpha_{m} \tau_{mH} }}{2k} + \frac{{\alpha_{r} \tau_{rH} }}{2k}} \right) = 0 $$
(A.43)
$$ \frac{\partial l}{{\partial \tau_{mL} }} = \left( {v - 1} \right)\left( {2\beta_{m} \tau_{mL} + \frac{{\alpha_{m} k\left( {c - w_{L} } \right)}}{2}} \right) - \alpha_{m} \lambda 1\left( {\frac{\gamma }{2k} - \frac{{w_{L} }}{2} + \frac{{\alpha_{m} \tau_{mL} }}{2k} + \frac{{\alpha_{r} \tau_{rH} }}{2k}} \right) = 0 $$
(A.44)

By setting the first order derivatives of Lagrange function \(l\) and using the abbreviation Table 3, the optimal solutions can be achieved as:

$$ w_{H}^{*} = \frac{{ - \left( {\left( {16A_{1} k^{3} - 4A_{3} k^{2} } \right)\left( {1 - 2v} \right) - 48A_{2} k^{2} \left( {1 - \frac{2}{3}v} \right) + (A_{5} - A_{4} )\left( {1 - v} \right) + \left( {8A_{6} + 16A_{8} k + 16A_{9} - 8A_{10} } \right)k\left( {1 - v} \right) - 64A_{7} k^{2} \left( {1 - \frac{3}{4}v} \right)} \right)}}{{\left( {4\beta_{m} k^{2} \left( { - \alpha_{m}^{2} + 8\beta_{m} k} \right)} \right)}} $$
(A.45)
$$ w_{L}^{*} = \frac{{\left( {\left( {16A_{1} k^{3} - 4A_{3} k^{2} } \right)\left( {1 - 2v} \right) + 16A_{2} k^{2} \left( {1 + 2v} \right) + (A_{4} - A_{5} )v - \left( {8A_{6} - 16A_{9} + 8A_{10} } \right)kv + 48A_{7} k^{2} v + 16A_{8} k^{2} \left( {1 - v} \right)} \right)}}{{\left( {4\beta_{m} k^{2} \left( { - \alpha_{m}^{2} + 8\beta_{m} k} \right)} \right)}} $$
(A.46)
$$ \tau_{mH}^{*} = \frac{{\left( {4B_{1} k\left( {ck - \gamma - 2cvk + 2\gamma v} \right) + \left( {B_{2} - B_{3} + 4B_{5} k} \right)\left( {1 - v} \right) - 8B_{4} k\left( {1 - \frac{3}{2}v} \right)} \right)}}{{\left( {4\beta_{m} k\left( { - \alpha_{m}^{2} + 8\beta_{m} k} \right)} \right)}} $$
(A.47)
$$ \tau_{mL}^{*} = \frac{{\left( {4B_{1} k\left( {\gamma - ck - 2\gamma v + 2ckv} \right) + \left( {B_{2} - B_{3} - 12B_{4} k} \right)v + 4B_{5} k\left( {1 + v} \right)} \right)}}{{\left( {4\beta_{m} k\left( { - \alpha_{m}^{2} + 8\beta_{m} k} \right)} \right)}} $$
(A.48)

Finally, by plugging the found solutions into Eq. (A.27) and Eq. (A.28), we can obtain

$$ p_{HH}^{*} = \frac{{ - \left( {\left( {8A_{1} k^{3} - 4A_{3} k^{2} } \right)\left( {1 - 2v} \right) - 40A_{2} k^{2} \left( {1 - \frac{2}{5}v} \right) + \left( {A_{5} - A_{4} + 8A_{6} k + 8A_{8} k^{2} + 14A_{9} k - 6A_{10} k} \right)\left( {1 - v} \right) - 48A_{7} k^{2} \left( {1 - \frac{1}{2}v} \right)} \right)}}{{\left( {4\beta_{m} k^{2} \left( { - \alpha_{m}^{2} + 8\beta_{m} k} \right)} \right)}} $$
(A.49)
$$ p_{LL}^{*} = \frac{{\left( {8A_{1} k^{3} \!-\! 4A_{3} k^{2} } \right)\left( {1 \!-\! 2v} \right) \!+\! 24A_{2} k^{2} \left( {1 \!+\! \frac{2}{3}v} \right) \!+\! (A_{4} \!-\! A_{5} )v \!+\! \left( { - 8A_{6} \!+\! 24A_{7} \!-\! 14A_{9} \!+\! 6A_{10} } \right)kv \!+\! 24A_{8} k^{2} \left( {1 \!-\! \frac{1}{3}v} \right)}}{{\left( {4\beta_{m} k^{2} \left( { - \alpha_{m}^{2} \!+\! 8\beta_{m} k} \right)} \right)}} $$
(A.50)

Proof of Lemma 2. Given \(\left( {w_{\theta } ,\tau_{m\theta } } \right)\), the profit of the \(H\)-type retailer would be:

$$ \Pi_{rH} = \left( {p_{H} - w_{\theta } } \right) \times \left( {\gamma - p_{H} + \alpha_{m} \tau_{m\theta } + \alpha_{r} H} \right) - H^{2} \beta_{r} $$
(A.51)
$$ \frac{{\partial \Pi_{rH} }}{{\partial p_{H} }} = 0 \to w_{\theta } - 2p_{H} + \gamma + \alpha_{r} H + \alpha_{m} \tau_{m\theta } = 0 $$
(A.52)
$$ \to p_{H} = \frac{{w_{\theta } }}{2} + \frac{\gamma }{2} + \frac{{\left( {\alpha_{r} H} \right)}}{2} + \frac{{\left( {\alpha_{m} \tau_{m\theta } } \right)}}{2} $$
(A.53)
$$ \to \Pi_{rH} = \frac{\gamma }{2} - \frac{{w_{\theta } }}{2} + \frac{{\left( {\alpha_{r} H} \right)}}{2} + \frac{{\left( {\alpha_{m} \tau_{m\theta } } \right)}}{2}^{2} - H^{2} \beta_{r} $$
(A.54)

In a similar way, given \(\left( {w_{\theta } ,\tau_{m\theta } } \right)\), the profit of the \(L\)-type retailer would be:

$$ \Pi_{rL} = \left( {p_{L} - w_{\theta } } \right) \times \left( {\gamma - p_{L} + \alpha_{m} \tau_{m\theta } + \alpha_{r} L} \right) - L^{2} \beta_{r} $$
(A.55)
$$ \frac{{\partial \Pi_{rL} }}{{\partial p_{L} }} = 0 \to w_{\theta } - 2p_{L} + \gamma + \alpha_{r} L + \alpha_{m} \tau_{m\theta } = 0 $$
(A.56)
$$ \to p_{L} = \frac{{w_{\theta } }}{2} + \frac{\gamma }{2} + \frac{{\left( {\alpha_{r} L} \right)}}{2} + \frac{{\left( {\alpha_{m} \tau_{m\theta } } \right)}}{2} $$
(A.57)
$$ \to \Pi_{rL} = \frac{\gamma }{2} - \frac{{w_{\theta } }}{2} + \frac{{\left( {\alpha_{r} L} \right)}}{2} + \frac{{\left( {\alpha_{m} \tau_{m\theta } } \right)}}{2}^{2} - L^{2} \beta_{r} $$
(A.58)

The retailer is rational, so he exerts high green sales effort if it leads to more profit. By comparing his profit under both \(H\) and \(L\) conditions, we obtain:

$$ \Pi_{rH} > \Pi_{rL} \to \frac{\gamma }{2} - \frac{{w_{\theta } }}{2} + \frac{{\left( {\alpha_{r} H} \right)}}{2} + \frac{{\left( {\alpha_{m} \tau_{m\theta } } \right)}}{2}^{2} - H^{2} \beta_{r} > \frac{\gamma }{2} - \frac{{w_{\theta } }}{2} + \frac{{\left( {\alpha_{r} L} \right)}}{2} + \frac{{\left( {\alpha_{m} \tau_{m\theta } } \right)}}{2}^{2} - L^{2} \beta_{r} $$
(A.59)
$$ \to \gamma > w_{\theta } - \alpha_{m} \tau_{m\theta } $$
(A.60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, A., Heydari, J., Madani Hosseini, M. et al. Green channel coordination under asymmetric information. Ann Oper Res 329, 1049–1082 (2023). https://doi.org/10.1007/s10479-021-04284-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04284-w

Keywords

Navigation