Skip to main content

Advertisement

Log in

To share or not to share? When information sharing meets remanufacturing

  • S.I. : Information- Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Traditional research shows that a retailer suffers a loss due to information sharing with a manufacturer in a supply chain. However, when the manufacturer produces both new and remanufactured products, the retailer’s trade-offs change. This paper investigates whether the retailer can share demand information with the manufacturer if they can add remanufactured products to the product line. We reveal that the retailer can benefit from information sharing when the manufacturer may remanufacture. On the one hand, if the retailer shares information, the manufacturer utilizes information to strategically adjust wholesale prices, resulting in a reduction in the retailer’s profit. On the other hand, if the retailer does not share the information, the manufacturer abandons remanufacturing, leading to a lower profit for the retailer. Therefore, when the former loss is less than the latter, the retailer is willing to share information with the manufacturer. Furthermore, we find that remanufacturing and information sharing can achieve a triple-win situation for the retailer, the manufacturer and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See the following report on Cash for Cartridges: https://www.cashforcartridges.co.uk/news-category/the-impact-of-ink-cartridges-on-the-environment.

References

  • Akan, M., Ata, B., & Savaşkan-Ebert, R. C. (2013). Dynamic pricing of remanufacturable products under demand substitution: A product life cycle model. Annals of Operations Research, 211(1), 1–25.

    Google Scholar 

  • Atasu, A., Guide, V. D. R., Jr., & Van Wassenhove, L. N. (2010). So what if remanufacturing cannibalizes my new product sales? California Management Review, 52(2), 56–76.

    Google Scholar 

  • Atasu, A., Sarvary, M., & Van Wassenhove, L. N. (2008). Remanufacturing as a marketing strategy. Management Science, 54(10), 1731–1746.

    Google Scholar 

  • Bian, J., Guo, X., Lai, K. K., & Hua, Z. (2014). The strategic peril of information sharing in a vertical-Nash supply chain: A note. International Journal of Production Economics, 158, 37–43.

    Google Scholar 

  • Bian, W., Shang, J., & Zhang, J. (2016). Two-way information sharing under supply chain competition. International Journal of Production Economics, 178, 82–94.

    Google Scholar 

  • Chen, Y., & Chen, F. (2019). On the Competition between two modes of product recovery: Remanufacturing and refurbishing. Production and Operations Management, 28(12), 2983–3001.

    Google Scholar 

  • Dong, L., Narasimhan, C., & Zhu, K. (2009). Product line pricing in a supply chain. Management Science, 55(10), 1704–1717.

    Google Scholar 

  • Fang, C., You, Z., Yang, Y., Chen, D., & Samar, M. (2020). Is third-party remanufacturing necessarily harmful to the original equipment manufacturer? Annals of Operations Research, 291, 317–338.

    Google Scholar 

  • Ferguson, M. E., & Toktay, L. B. (2006). The effect of competition on recovery strategies. Production and Operations Management, 15(3), 351–368.

    Google Scholar 

  • Ferrer, G., & Swaminathan, J. M. (2006). Managing new and remanufactured products. Management Science, 52(1), 15–26.

    Google Scholar 

  • Gal-Or, E. (1985). Information sharing in oligopoly. Econometrica: Journal of the Econometric Society , 53 (2): 329–343.

  • Giutini, R., & Gaudette, K. (2003). Remanufacturing: The next great opportunity for boosting US productivity. Business Horizons, 46(6), 41–48.

    Google Scholar 

  • Guo, L. (2009). The benefits of downstream information acquisition. Marketing Science, 28(3), 457–471.

    Google Scholar 

  • Han, X., Shen, Y., & Bian, Y. (2020). Optimal recovery strategy of manufacturers: Remanufacturing products or recycling materials? Annals of Operations Research, 290, 463–489.

    Google Scholar 

  • Hong, Z., Wang, H., & Yu, Y. (2018). Green product pricing with non-green product reference. Transportation Research Part E: Logistics and Transportation Review, 115, 1–15.

    Google Scholar 

  • Huang, H., Meng, Q., Xu, H., & Zhou, Y. (2019). Cost information sharing under competition in remanufacturing. International Journal of Production Research, 57(21), 6579–6592.

    Google Scholar 

  • Huang, S., Guan, X., & Chen, Y. J. (2018). Retailer information sharing with supplier encroachment. Production and Operations Management, 27(6), 1133–1147.

    Google Scholar 

  • Huang, S., & Yang, J. (2016). Information acquisition and transparency in a supply chain with asymmetric production cost information. International Journal of Production Economics, 182, 449–464.

    Google Scholar 

  • Huang, Y., & Wang, Z. (2017a). Values of information sharing: A comparison of supplier-remanufacturing and manufacturer-remanufacturing scenarios. Transportation Research Part E: Logistics and Transportation Review, 106, 20–44.

    Google Scholar 

  • Huang, Y., & Wang, Z. (2017b). Information sharing in a closed-loop supply chain with technology licensing. International Journal of Production Economics, 191, 113–127.

    Google Scholar 

  • Jiang, Z.-Z., Zhao, J., Yi, Z., & Zhao, Y. (2020). Inducing information transparency: The roles of gray market and dual-channel. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03719-0

    Article  Google Scholar 

  • Jin, M., Nie, J., Yang, F., & Zhou, Y. (2017). The impact of third-party remanufacturing on the forward supply chain: A blessing or a curse? International Journal of Production Research, 55(22), 6871–6882.

    Google Scholar 

  • Keppo, J., Moscarini, G., & Smith, L. (2008). The demand for information: More heat than light. Journal of Economic Theory, 138(1), 21–50.

    Google Scholar 

  • Kwak, M., & Kim, H. (2017). Green profit maximization through integrated pricing and production planning for a line of new and remanufactured products. Journal of Cleaner Production, 142(4), 3454–3470.

    Google Scholar 

  • Li, G., Zheng, H., Ji, X., & Li, H. (2018). Game theoretical analysis of firms’ operational low-carbon strategy under various cap-and-trade mechanisms. Journal of Cleaner Production, 197, 124–133.

    Google Scholar 

  • Li, L. (1985). Cournot oligopoly with information sharing. The RAND Journal of Economics, 16(4), 521–536.

    Google Scholar 

  • Li, L. (2002). Information sharing in a supply chain with horizontal competition. Management Science, 48(9), 1196–1212.

    Google Scholar 

  • Liao, B. (2018). Warranty as a competitive dimension for remanufactured products under stochastic demand. Journal of Cleaner Production, 198, 511–519.

    Google Scholar 

  • Liu, M., Zhao, Y., Huang, R., & Perera, S. (2021). Vertical value-added cost information sharing in a supply chain. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04021-3

    Article  Google Scholar 

  • Liu, Z., Li, T., Jiang, Q. H., & Zhang, H. C. (2013). LCA-based comparative evaluation of newly manufactured and remanufactured diesel engine. Journal of Industrial Ecology, 18(4), 663–667.

    Google Scholar 

  • Mittendorf, B., Shin, J., & Yoon, D. H. (2013). Manufacturer marketing initiatives and retailer information sharing. Quantitative Marketing and Economics, 11(2), 263–287.

    Google Scholar 

  • Örsdemir, A., Kemahlıoğlu-Ziya, E., & Parlaktürk, A. K. (2014). Competitive quality choice and remanufacturing. Production and Operations Management, 23(1), 48–64.

    Google Scholar 

  • Raith, M. (1996). A general model of information sharing in oligopoly. Journal of Economic Theory, 71(1), 260–288.

    Google Scholar 

  • Reimann, M., Xiong, Y., & Zhou, Y. (2019). Managing a Closed-loop Supply Chain with Process Innovation for Remanufacturing. European Journal of Operational Research, 276(2), 510–518.

    Google Scholar 

  • Shamir, N. (2012). Strategic information sharing between competing retailers in a supply chain with endogenous wholesale price. International Journal of Production Economics, 136(2), 352–365.

    Google Scholar 

  • Smith, V. M., & Keoleian, G. A. (2004). The value of remanufactured engines: Life-cycle environmental and economic perspectives. MIT Press, 8(1–2), 193–221.

    Google Scholar 

  • Wang, Y., Niu, B., & Guo, P. (2013). On the advantage of quantity leadership when outsourcing production to a competitive contract manufacturer. Production and Operations Management, 22(1), 104–119.

    Google Scholar 

  • Webster, S., & Mitra, S. (2007). Competitive strategy in remanufacturing and the impact of take-back laws. Journal of Operations Management, 25(6), 1123–1140.

    Google Scholar 

  • Wei, J., Zhao, J., & Hou, X. (2019). Bilateral information sharing in two supply chains with complementary products. Applied Mathematical Modelling, 72, 28–49.

    Google Scholar 

  • Wu, X., & Zhou, Y. (2016). Does the entry of third-party remanufacturers always hurt original equipment manufacturers? Decision Sciences, 47(4), 762–780.

    Google Scholar 

  • Xiong, Y., Zhao, Q., & Zhou, Y. (2016). Manufacturer-remanufacturing vs supplier-remanufacturing in a closed-loop supply chain. International Journal of Production Economics, 176, 21–28.

    Google Scholar 

  • Zhang, F., & Zhang, R. (2018). Trade-in remanufacturing, customer purchasing behavior, and government policy. Manufacturing & Service Operations Management, 20(4), 601–616.

    Google Scholar 

  • Zhang, J. H., & Chen, M. (2015). Assessing the impact of china’s vehicle emission standards on diesel engine remanufacturing. Journal of Cleaner Production, 107(16), 177–184.

    Google Scholar 

  • Zhang, P., Xiong, Y., Xiong, Z., & Zhou, Y. (2018). Information sharing and service channel design in the presence of forecasting demand. Journal of the Operational Research Society, 69(12), 1920–1934.

    Google Scholar 

  • Zhang, P., & Xiong, Z. (2017). Information Sharing in a closed-loop supply chain with asymmetric demand forecasts. Mathematical Problems in Engineering, 4, 1–12.

    Google Scholar 

  • Zhang, S., Dan, B., & Zhou, M. (2019). After-sale service deployment and information sharing in a supply chain under demand uncertainty. European Journal of Operational Research, 279(2), 351–363.

    Google Scholar 

  • Zhao, S., & Zhu, Q. (2017). Remanufacturing supply chain coordination under the stochastic remanufacturability rate and the random demand. Annals of Operations Research, 257, 661–695.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation of China (Nos. 71672153, 61876157, 71571148), the Chuying Scholar Plan (Part A) of SWJTU and the Yanghua Scholar Plan (Part A) of SWJTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proofs

For ease of exposition, we define

$$ \begin{aligned} \pi _{M}^{{NR1}} = & \frac{{\left( {3 - 2{\mkern 1mu} c} \right)^{2} }}{{32}} - F,\pi _{R}^{{NR1}} = \frac{{12c^{2} - 36c + {\text{372}}}}{{192}}, \\ \pi _{M}^{{NR2}} = & \frac{{4\left( {c - x - 2} \right)\left( {b - 1} \right)\varepsilon + \left( {4cx - 4x + 1} \right)b + 4c^{2} + 4x^{2} - 8c + 2}}{{8\left( {b + 3} \right)\left( {1 - b} \right)}} - F\pi _{R}^{{NR2}} \\ = & \frac{{8\varepsilon \left( {c - x - 2\varepsilon } \right)\left( {b - 1} \right) + \left( {2x - 1} \right)\left( {2c - 1} \right)\left( {b + 1} \right) + \left( {2c - 1} \right)^{2} + \left( {2x - 1} \right)^{2} }}{{16\left( {b + 3} \right)\left( {1 - b} \right)}} \\ \pi _{M}^{{IR1}} = & \frac{{3c^{2} - 9c + 7}}{{24}} - F,\pi _{R}^{{IR1}} = \frac{{3c^{2} - 9c + {\text{7}}}}{{48}}, \\ \pi _{M}^{{IR2}} = & \frac{{\varepsilon \left( {1 + \varepsilon {\text{ + }}x - c} \right)\left( {1 - b} \right) + \left( {1 - c} \right)\left( {1 - x + bx + c} \right) + x^{2} }}{{2\left( {b + 3} \right)\left( {1 - b} \right)}} - F \\ \pi _{R}^{{IR2}} = & \frac{{\varepsilon \left( {1 + \varepsilon {\text{ + }}x - c} \right)\left( {1 - b} \right) + \left( {1 - c} \right)\left( {1 - x + bx + c} \right) + x^{2} }}{{4\left( {b + 3} \right)\left( {1 - b} \right)}}, \\ \tau _{0} = & \frac{{9b - 12x + 3 + 2\sqrt {6 - 3b^{2} - 3b} }}{{6\left( {1 + b} \right)}}, \quad \tau _{1} = \frac{{3b - 4x + 1}}{{2\left( {b + 1} \right)}}. \\ \end{aligned} $$

Proof of Proposition 1 First, we solve the equilibrium solution of remanufacturing or no remanufacturing without information sharing.

No remanufacturing Given that R does not share demand information, if M does not remanufacture, the profit function of R is

$$ \pi _{R}^{{NN}} = \left( {1 + \varepsilon - q_{n}^{{NN}} - w_{n}^{{NN}} } \right)q_{n}^{{NN}} . $$

Given the wholesale price \(w_{n}\), R’s optimal order quantity is

$$ q_{n}^{{NN}} (w_{n}^{{NN}} ) = \frac{1}{2}\left( {1 + \varepsilon - w_{n}^{{NN}} } \right). $$

Without demand information, M uses expected value \({\text{E}}\left[ \varepsilon \right]\) to anticipate R’s optimal order quantity. Thus, the problem of M under no information sharing and no remanufacturing is

$$ E\left[ {\pi _{M}^{{NN}} } \right] = \left( {w_{n}^{{NN}} - c} \right)\left( {\frac{{1 + {\text{E}}\left[ \varepsilon \right] - w_{n}^{{NN}} }}{2}} \right). $$

As \(\varepsilon \sim U\left[ {0,1} \right]\), we have \({\text{E}}\left[ \varepsilon \right] = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\). The optimal wholesale price of the new product is

$$ w_{n}^{{NN}} = \frac{1}{4}\left( {3 + 2c} \right). $$

By substituting the optimal wholesale price into R’s order quantity response function, we write the optimal ex post order quantity as

$$q_{n}^{{NN}} = \frac{1}{8}\left( {1 + 4\varepsilon - 2c} \right).$$

Let \(c \le {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\) to guarantee \(q_{n}^{{NN}} \ge 0\). The ex post optimal profits are \(\pi _{M}^{{NN}} = 0\) and \(\pi _{R}^{{NN}} = 0\), and the ex ante profits of M and R are

$$ \Pi _{M}^{{NN}} = \int_{0}^{1} {\frac{{\left( {3 - 2c} \right)\left( {1 + 4\varepsilon - 2c} \right)}}{{32}}d\varepsilon = } \frac{{\left( {3 - 2{\mkern 1mu} c} \right)^{2} }}{{32}}, $$
$$ \Pi _{R}^{{NN}} = \int_{0}^{1} {\frac{{\left( {1 + 4\varepsilon - 2c} \right)^{2} }}{{64}}d\varepsilon = } \frac{{12c^{2} - 36c + {\text{372}}}}{{192}}. $$

Remanufacturing Given that R does not share demand information, if M remanufactures, the profit function of R is

$$ \pi _{R}^{{NR}} = \left( {1 + \varepsilon - q_{n}^{{NR}} - bq_{r}^{{NR}} - w_{n}^{{NR}} } \right)q_{n}^{{NR}} + \left( {x + \varepsilon - q_{r}^{{NR}} - q_{n}^{{NR}} - w_{r}^{{NR}} } \right)q_{r}^{{NR}} . $$

Given the wholesale price \(w_{n}\) of the new product and the wholesale price \(w_{r}\) of the remanufactured product, R’s optimal order quantities of each product are

$$ q_{n}^{{NR}} (w_{n}^{{NR}} ,w_{r}^{{NR}} ) = \frac{{\left( {1 - b} \right)\varepsilon - \left( {1 + b} \right)\left( {x - w_{r}^{{NR}} } \right) + 2\left( {1 - w_{n}^{{NR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}, $$
$$ q_{r}^{{NR}} (w_{n}^{{NR}} ,\quad w_{r}^{{NR}} ) = \frac{{\left( {1 - b} \right)\varepsilon - \left( {1 + b} \right)\left( {1 - w_{n}^{{NR}} } \right) + 2\left( {x - w_{r}^{{NR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}. $$

Without demand information, M uses expected demand value \({\text{E(}}\varepsilon )\) to anticipate R’s optimal order quantities of each product. Hence, the problem of M can be written as

$$ \begin{aligned} E\left[ {\pi _{M}^{{NR}} } \right] = \left( {w_{n}^{{NR}} - c} \right)\left( {\frac{{\left( {1 - b} \right){\text{E}}\left[ \varepsilon \right] - \left( {1 + b} \right)\left( {x - w_{r}^{{NR}} } \right) + 2\left( {1 - w_{n}^{{NR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}} \right) \hfill \\ \quad + w_{r}^{{NR}} \left( {\frac{{\left( {1 - b} \right){\text{E}}\left[ \varepsilon \right] - \left( {1 + b} \right)\left( {1 - w_{n}^{{NR}} } \right) - 2\left( {x - w_{r}^{{NR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}} \right) - F. \hfill \\ \end{aligned} $$

The optimal wholesale prices of the new product and remanufactured product are

$$ w_{n}^{{NR}} = \frac{{3 + 2c}}{4},w_{r}^{{NR}} = \frac{{1 + 2x}}{4}. $$

By substituting the wholesale prices into R’s order quantity response functions, we obtain the optimal ex post optimal order quantities of each product as

$$q_{n}^{{NR}} = \frac{{\left( {2x + 4{\mkern 1mu} \varepsilon - 1} \right)\left( {1 - b} \right) + 4x\left( {1 - x - c} \right)}}{{4\left( {3 + b} \right)\left( {1 - b} \right)}},$$

and

$$ q_{r}^{{NR}} = \left\{ \begin{gathered} 0,{\text{ }}if{\text{ 0}} \le \varepsilon \le \varepsilon _{0} , \hfill \\ \frac{{\left( {4{\mkern 1mu} \varepsilon - 1} \right)\left( {1 - b} \right) + 4x - 2\left( {1 + b} \right)\left( {1 - c} \right)}}{{4\left( {3 + b} \right)\left( {1 - b} \right)}}, \quad if \quad \varepsilon _{0} < \varepsilon \le 1, \hfill \\ \end{gathered} \right. $$

where \(\varepsilon _{0} = {{\left( {4x - \left( {1 - b} \right) - 2\left( {1 - c} \right)\left( {1 + b} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {4x - \left( {1 - b} \right) - 2\left( {1 - c} \right)\left( {1 + b} \right)} \right)} {\left( {4\left( {1 - b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {4\left( {1 - b} \right)} \right)}}\). Let \(c \le 1 - x\) to guarantee \(q_{n}^{{NR}} \ge q_{r}^{{NR}}\).

Thus, if \(\varepsilon \le \varepsilon _{0} ,q_{r}^{{NR}} = 0.\) The ex post optimal profits of M and R are \(\pi _{M}^{{NR}} = \pi _{M}^{{NR1}}\) and \(\pi _{R}^{{NR}} = \pi _{R}^{{NR1}}\). If \(\varepsilon > \varepsilon _{0} ,q_{r}^{{NR}} > 0.\) The ex post optimal profits of M and R are \(\pi _{M}^{{NR}} = \pi _{M}^{{NR2}}\) and \(\pi _{R}^{{NR}} = \pi _{R}^{{NR2}}\).

Next, we calculate the ex ante profits of M and R. If \(c \le {{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}},\varepsilon _{0} > 1,q_{r}^{{NR}} = 0\) always holds in the feasible region, and the ex ante profits of M and R are

$$ \Pi _{M}^{{NR{\text{1}}}} = \int_{0}^{1} {\pi _{M}^{{NR1}} d\varepsilon } = \frac{{\left( {3 - 2{\mkern 1mu} c} \right)^{2} }}{{32}} - F, $$
$$ \Pi _{R}^{{NR{\text{1}}}} = \int_{0}^{1} {\pi _{R}^{{NR1}} d\varepsilon = } \frac{{12c^{2} - 36c + {\text{372}}}}{{192}}. $$

If \({{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}} < c \le {{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}},q_{r}^{{NR}} > 0\) when \(\varepsilon > \varepsilon _{0}\). The corresponding ex ante profits of M and R are

$$ \begin{gathered} \Pi _{M}^{{NR{\text{2}}}} = \int_{0}^{{\varepsilon _{{\text{0}}} }} {\pi _{M}^{{NR1}} d\varepsilon } {\text{ + }}\int_{{\varepsilon _{{\text{0}}} }}^{{\text{1}}} {\pi _{M}^{{NR{\text{2}}}} d\varepsilon } \hfill \\ \quad = \frac{{\kappa _{0} ^{2} \left( { - 2bc + 2\kappa _{0} + 7b - 2c - 4x - 3} \right)}}{{256\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} + \frac{{8\left( {2c - 3} \right)^{2} }}{{256\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} - F, \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Pi _{R}^{{NR{\text{2}}}} = \int_{0}^{{\varepsilon _{0} }} {\pi _{R}^{{NR1}} d\varepsilon } + \int_{{\varepsilon _{0} }}^{1} {\pi _{R}^{{NR2}} d\varepsilon } \hfill \\ {\text{ }} = \frac{{12x\kappa _{0} \left( {\kappa _{0} - 4x} \right) + 8\left( {b + 1} \right)^{3} c^{3} + 12\left( {13b^{3} - 5b^{2} - 23b} \right)c^{2} }}{{768\left( {1 - b} \right)^{2} \left( {3 + b} \right)}} \hfill \\ \quad + \frac{{64x^{3} - 6\left( {71 - 111b + 9b^{2} - b^{3} } \right)c - b^{3} + 199b^{2} - 635b + 373}}{{768\left( {1 - b} \right)^{2} \left( {3 + b} \right)}}, \hfill \\ \end{gathered} $$

where \(\kappa _{0} = 2bc - 5b + 2c + 4x + 1\). If \(c > {{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), the corresponding ex ante profits of the manufacturer and the retailer are

$$ \Pi _{M}^{{NR{\text{3}}}} = \int_{0}^{1} {\pi _{M}^{{NR2}} d\varepsilon } = \frac{{4x\left( {1 + x} \right) + 1 + \left( {3 - 2c} \right)\left( {2\left( {1 - xb - c - x} \right) - b} \right)}}{{8\left( {3 + b} \right)\left( {1 - b} \right)}} - F, $$
$$ \Pi _{R}^{{NR{\text{3}}}} = \int_{0}^{1} {\pi _{R}^{{NR2}} d\varepsilon } = \frac{{6x\left( {2c - 1} \right)\left( {1 + b} \right) + 12x\left( {x - b} \right) + 12\left( {1 - c} \right)^{2} + \left( {13 - 6c} \right)\left( {1 - b} \right)}}{{48\left( {b + 3} \right)\left( {1 - b} \right)}}. $$

As a result, we have

$$ \Pi _{i}^{{NR}} \left( {i = M,R} \right) = \left\{ \begin{gathered} \Pi _{i}^{{NR{\text{1}}}} ,{\text{ }}if{\text{ }}c \le \frac{{5b - 4x - 1}}{{2\left( {1 + b} \right)}}, \hfill \\ \Pi _{i}^{{NR{\text{2}}}} ,{\text{ }}if{\text{ }}\frac{{5b - 4x - 1}}{{2\left( {1 + b} \right)}} < c \le \min \left\{ {\frac{{b - 4x + 3}}{{2\left( {1 + b} \right)}},\frac{1}{2}} \right\}, \hfill \\ \Pi _{i}^{{NR{\text{3}}}} ,{\text{ }}if{\text{ }}\min \left\{ {\frac{{b - 4x + 3}}{{2\left( {1 + b} \right)}},\frac{1}{2}} \right\} < c \le \bar{c}. \hfill \\ \end{gathered} \right. $$

We analyze M’s remanufacturing strategy by comparing the optimal profits under remanufacturing and no remanufacturing.

  1. 1.

    If \(c \le {{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have

    $$\Pi _{M}^{{NR}} - \Pi _{M}^{{NN}} = - F.$$

    Let \(F_{1}^{N} = 0\). \(\Pi _{M}^{{NR}} \le \Pi _{M}^{{NN}}\) if \(F \ge F_{1}^{N}\). Thus, M never remanufactures in this case.

  2. 2.

    If \({{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}} < c \le {{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have

    $$ \Pi _{M}^{{NR}} - \Pi _{M}^{{NN}} = \frac{{\left( {2bc - 3b + 2c + 4x - 1} \right)\left( {2bc - 5b + 2c + 4x + 1} \right)^{2} }}{{256\left( {b + 3} \right)\left( {1 - b} \right)^{2} }} - F. $$

    Let

    $$ F_{2}^{N} = \frac{{\left( {2bc - 3b + 2c + 4x - 1} \right)\left( {2bc - 5b + 2c + 4x + 1} \right)^{2} }}{{256\left( {b + 3} \right)\left( {1 - b} \right)^{2} }}. $$

Then, \(\Pi _{M}^{{NR}} > \Pi _{M}^{{NN}}\) and \(F < F_{2}^{N}\), and M remanufactures; otherwise, \(\Pi _{M}^{{NR}} \le \Pi _{M}^{{NN}}\), and M never remanufactures.

(3) If \(c > {{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have

$$ \Pi _{M}^{{NR}} - \Pi _{M}^{{NN}} = \frac{{\left( {2bc - 3b + 2c + 4x - 1} \right)^{2} }}{{32\left( {b + 3} \right)\left( {1 - b} \right)}} - F. $$

Let.

$$ F_{3}^{N} = \frac{{\left( {2bc - 3b + 2c + 4x - 1} \right)^{2} }}{{32\left( {b + 3} \right)\left( {1 - b} \right)}}. $$

Then, \(\Pi _{M}^{{NR}} > \Pi _{M}^{{NN}}\) and \(F < F_{3}^{N}\), and M remanufactures; otherwise, \(\Pi _{M}^{{NR}} \le \Pi _{M}^{{NN}}\), and M never remanufactures. Define

$$ \Omega _{N} = \left\{ \begin{gathered} F_{0}^{N} ,{\text{ }}if{\text{ }}c \le \frac{{5b - 4x - 1}}{{2\left( {1 + b} \right)}}, \hfill \\ F_{1}^{N} ,{\text{ }}if{\text{ }}\frac{{5b - 4x - 1}}{{2\left( {1 + b} \right)}} < c \le \min \left\{ {\frac{1}{2},\frac{{b - 4x + 3}}{{2\left( {1 + b} \right)}}} \right\}, \hfill \\ F_{2}^{N} ,{\text{ }}if{\text{ }}\frac{{b - 4x + 3}}{{2\left( {1 + b} \right)}} < c \le \bar{c}. \hfill \\ \end{gathered} \right. $$

Thus, M remanufactures if and only if \(F \le \Omega _{N}\).

Proof of Proposition 2 We solve the equilibrium of remanufacturing and no remanufacturing with information sharing.

No remanufacturing Given that R shares demand information, if M does not remanufacture, the profit function of R is

$$ \pi _{R}^{{IN}} = \left( {1 + \varepsilon - q_{n}^{{IN}} - w_{n}^{{IN}} } \right)q_{n}^{{IN}} . $$

Given wholesale price \(w_{n}\), R’s optimal order quantity is

$$ q_{n}^{{IN}} (w_{n}^{{IN}} ) = \frac{1}{2}\left( {1 + \varepsilon - w_{n}^{{IN}} } \right). $$

With demand information, the problem of M for the case with no remanufacturing is

$$ \mathop {\max }\limits_{{w_{n}^{{IN}} }} \left( {w_{n}^{{IN}} - c} \right)\left( {\frac{{1 + \varepsilon - w_{n}^{{IN}} }}{2}} \right). $$

The optimal wholesale price of the new product is

$$ w_{n}^{{IN}} = \frac{1}{2}\left( {1 + \varepsilon + c} \right). $$

By substituting the optimal wholesale price into R’s order quantity response function, we write the optimal ex post optimal order quantity as

$$ q_{n}^{{IN}} = \frac{1}{4}\left( {1 + \varepsilon - c} \right). $$

Obviously, \(q_{n}^{{IN}} > 0\), and the ex post optimal profits of M and R are

$$\pi _{M}^{{IN}} = \frac{{\left( {1 + \varepsilon - c} \right)^{2} }}{8}$$

and

$$\pi _{R}^{{IN}} = \frac{{\left( {1 + \varepsilon - c} \right)^{2} }}{{16}}$$

The ex ante profits of M and R are

\(\Pi _{M}^{{IN}} = \int_{0}^{1} {\frac{{\left( {1 + \varepsilon - c} \right)^{2} }}{8}d\varepsilon = } \frac{{3c^{2} - 9c + 7}}{{24}}\) and \(\Pi _{R}^{{IN}} = \int_{0}^{1} {\frac{{\left( {1 + \varepsilon - c} \right)^{2} }}{{16}}d\varepsilon = } \frac{{3c^{2} - 9c + {\text{7}}}}{{48}}.\)

Remanufacturing Given that R shares demand information, if M remanufactures, the profit function of R is

$$ \pi _{R}^{{IR}} = \left( {1 + \varepsilon - q_{n}^{{IR}} - bq_{r}^{{IR}} - w_{n}^{{IR}} } \right)q_{n}^{{IR}} + \left( {x + \varepsilon - q_{r}^{{IR}} - q_{n}^{{IR}} - w_{r}^{{IR}} } \right)q_{r}^{{IR}} . $$

Given the wholesale price \(w_{n}\) of the new product and the wholesale price \(w_{r}\) of the remanufactured product, R’ optimal order quantities are

$$ q_{n}^{{IR}} (w_{n}^{{IR}} ,w_{r}^{{IR}} ) = \frac{{\left( {1 - b} \right)\varepsilon - \left( {1 + b} \right)\left( {x - w_{r}^{{IR}} } \right) + 2\left( {1 - w_{n}^{{IR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}, $$
$$ q_{r}^{{NR}} (w_{n}^{{NR}} ,w_{r}^{{NR}} ) = \frac{{\left( {1 - b} \right)\varepsilon - \left( {1 + b} \right)\left( {1 - w_{n}^{{NR}} } \right) + 2\left( {x - w_{r}^{{NR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}. $$

With demand information, the problem of M can be written as

$$ \begin{gathered} \mathop {\max }\limits_{{w_{n}^{{IR}} ,w_{r}^{{IR}} }} \left( {w_{n}^{{IR}} - c} \right)\left( {\frac{{\left( {1 - b} \right)\varepsilon - \left( {1 + b} \right)\left( {x - w_{r}^{{IR}} } \right) + 2\left( {1 - w_{n}^{{IR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}} \right) \hfill \\ {\text{ }} + w_{r}^{{IR}} \left( {\frac{{\left( {1 - b} \right)\varepsilon - \left( {1 + b} \right)\left( {1 - w_{n}^{{IR}} } \right) - 2\left( {x - w_{r}^{{IR}} } \right)}}{{\left( {3 + b} \right)\left( {1 - b} \right)}}} \right) - F. \hfill \\ \end{gathered} $$

The optimal wholesale price of the new product and the remanufactured product is as follows.

$$ w_{n}^{{IR}} = \frac{1}{2}\left( {1 + \varepsilon + c} \right),w_{r}^{{IR}} = \frac{1}{2}\left( {1 + \varepsilon } \right). $$

By substituting the optimal wholesale prices into R’s order quantity response functions, we write the optimal ex post optimal order quantities as

$$q_{n}^{{IR}} = \frac{{2\left( {1 - c} \right) + \varepsilon \left( {1 - b} \right) - bx}}{{2\left( {b + 3} \right)\left( {1 - b} \right)}}, $$

and

$$ q_{r}^{{IR}} = \left\{ \begin{gathered} 0,{\text{ , }}if{\text{ 0}} \le \varepsilon \le \varepsilon _{1} , \hfill \\ \frac{{\varepsilon \left( {1 - b} \right) + 2x - \left( {1 - c} \right)\left( {1 + b} \right)}}{{2\left( {3 + b} \right)\left( {1 - b} \right)}},{\text{ }}if{\text{ }}\varepsilon _{1} {\text{ < }}\varepsilon \le 1, \hfill \\ \end{gathered} \right. $$

where \(\varepsilon _{1} = {{\left( {4x - \left( {1 - b} \right) - 2\left( {1 - c} \right)\left( {1 + b} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {4x - \left( {1 - b} \right) - 2\left( {1 - c} \right)\left( {1 + b} \right)} \right)} {\left( {4\left( {1 - b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {4\left( {1 - b} \right)} \right)}}\). If \(\varepsilon \le \varepsilon _{1}\), the ex post optimal profits of M and R are \(\pi _{M}^{{IR}} = \pi _{M}^{{IR1}}\) and \(\pi _{R}^{{IR}} = \pi _{R}^{{IR1}}\), respectively. If \(\varepsilon > \varepsilon _{1}\), the ex post optimal profits of M and R are \(\pi _{M}^{{IR}} = \pi _{M}^{{IR2}}\) and \(\pi _{R}^{{IR}} = \pi _{R}^{{IR2}}\), respectively.

Next, we solve the ex ante profits of M and R. If \(c \le {{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), \(\varepsilon _{1} > 1\), which indicates that \(q_{r}^{{IR}} = 0\) always holds and the ex ante profits of M and R are

$$ \Pi _{M}^{{IR1}} = \int_{0}^{1} {\pi _{M}^{{IR1}} d\varepsilon = } \frac{{3c^{2} - 9c + 7}}{{24}} - F, \quad \Pi _{R}^{{IR1}} = \int_{0}^{1} {\pi _{R}^{{IR1}} d\varepsilon = } \frac{{3c^{2} - 9c + {\text{7}}}}{{48}}. $$

If \({{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), \(q_{n}^{{IR}} = 0\) only when \(\varepsilon \le \varepsilon _{1}\). The corresponding ex ante profits of M and R are

$$ \begin{aligned} \Pi _{M}^{{IR2}} &= \int_{0}^{{\varepsilon _{1} }} {\pi _{M}^{{IR1}} d\varepsilon } + \int_{{\varepsilon _{1} }}^{1} {\pi _{M}^{{IR2}} d\varepsilon } \hfill \\ & = \frac{{\left( {1 + b} \right)^{3} c^{3} + 6x\kappa _{0} \left( {\kappa _{0} - 2x} \right) - 3\left( {b^{3} + 3b^{2} + 7b - 3} \right)c^{2} }}{{24\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} \hfill \\ & \quad + \frac{{3\left( {b^{3} + b^{2} + 15b - 9} \right)c - b^{3} + 7b^{2} - 35b + 21}}{{24\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} - F, \hfill \\ \end{aligned} $$
$$\begin{aligned} \Pi _{R}^{{IR2}} & = \int_{0}^{{\varepsilon _{1} }} {\pi _{R}^{{IR1}} d\varepsilon } + \int_{{\varepsilon _{1} }}^{1} {\pi _{R}^{{IR2}} d\varepsilon } \hfill \\ & = \frac{{\left( {1 + b} \right)^{3} c^{3} + 6x\kappa _{1} \left( {\kappa _{1} - 2x} \right) - 3\left( {b^{3} + 3b^{2} + 7b - 3} \right)c^{2} }}{{48\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} \hfill \\ & \quad +\frac{{3\left( {b^{3} + b^{2} + 15b - 9} \right)c - b^{3} + 7b^{2} - 35b + 21}}{{48\left( {3 + b} \right)\left( {1 - b} \right)^{2} }}, \hfill \\ \end{aligned}$$

where \(\kappa _{1} = bc - 2b + c + 2x\). If \({{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le \bar{c}\), the corresponding ex ante profits of M and R are

$$ \Pi _{M}^{{IR3}} = \int_{0}^{1} {\pi _{M}^{{IR2}} d\varepsilon } = \frac{{6\left( {1 - c} \right)\left( {1 - c - x - xb} \right) + \left( {5 - 3c - 3x} \right)\left( {1 - b} \right) + 6x^{2} }}{{24\left( {b + 3} \right)\left( {1 - b} \right)}} - F, $$
$$ \Pi _{R}^{{IR3}} = \int_{0}^{1} {\pi _{R}^{{IR2}} d\varepsilon } = \frac{{6\left( {1 - c} \right)\left( {1 - c - x - xb} \right) + \left( {5 - 3c - 3x} \right)\left( {1 - b} \right) + 6x^{2} }}{{24\left( {b + 3} \right)\left( {1 - b} \right)}}. $$

As a result, we have

$$ \Pi _{i}^{{IR3}} \left( {i = M,R} \right) = \left\{ \begin{gathered} \Pi _{i}^{{IR1}} ,{\text{ }}if{\text{ }}c \le \frac{{2\left( {b - x} \right)}}{{1 + b}}, \hfill \\ \Pi _{i}^{{IR2}} ,{\text{ }}if{\text{ }}\frac{{2\left( {b - x} \right)}}{{1 + b}} < c \le \frac{{b - 2x + 1}}{{1 + b}}, \hfill \\ \Pi _{i}^{{IR3}} ,{\text{ }}if{\text{ }}\frac{{b - 2x + 1}}{{1 + b}} < c \le \bar{c}. \hfill \\ \end{gathered} \right. $$

Similar to that shown by the proof of Proposition 8, we find that M remanufactures if and only if \(F \le \Omega _{I}\).

Proof of Proposition 3 As \(\Omega _{N} \le \Omega _{I}\), we analyze R’s optimal information sharing decision for the scenarios of \(F \le \Omega _{N}\), \(F > \Omega _{I}\) and \(\Omega _{N} < F \le \Omega _{I}\).

Scenario 1 When \(F \le \Omega _{N}\), regardless of whether R shares demand information, M will always remanufacture. In anticipating M’s decision, R makes the information sharing decision by comparing her optimal ex ante profits from information sharing and no information sharing.

  1. (1.1)

    If \(c \le {{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), \(\Pi _{R}^{{IR}} - \Pi _{R}^{{NR}} = - {1 \mathord{\left/ {\vphantom {1 {64}}} \right. \kern-\nulldelimiterspace} {64}}\). Obviously, \(\Pi _{R}^{{IR}} < \Pi _{R}^{{NR}}\). Thus, R does not share information in this case.

  2. (1.2)

    If \({{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}} < c \le {{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), we assume that \(f_{1} \left( c \right) = \Pi _{R}^{{IR}} - \Pi _{R}^{{NR}}\). As \(f^{\prime}_{1} \left( c \right) < 0\) and \(f_{1} \left( {c = {{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}} \right) < 0\), \(\Pi _{R}^{{IR}} < \Pi _{R}^{{NR}}\) and R do not share information in this case.

  3. (1.3)

    If \({{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), we have \(f^{\prime}_{1} \left( c \right) < 0\) and \(f_{1} \left( {c = {{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}} \right) < 0\). Thus, \(\Pi _{R}^{{IR}} < \Pi _{R}^{{NR}}\), and R does not share information in this case.

  4. (1.4)

    If \({{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} \le c < {{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have

    $$ \Pi _{R}^{{IR}} - \Pi _{R}^{{NR}} = - \frac{{\left( {1 + b} \right)\left( {2bc - b + 2c + 4x - 3} \right)^{2} }}{{128\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} $$

    Obviously, and R do not share information in this case.

  5. (1.5)

    If, \( (b - 4x + 3)/(2(1 + b)) \le c < \bar{c} \) we have

    $$ \Pi _{R}^{{IR}} - \Pi _{R}^{{NR}} = \frac{{2bx + b + 4c + 2x - 5}}{{8\left( {b + 3} \right)\left( {1 - b} \right)}}. $$

Thus, \(\Pi _{R}^{{IR}} < \Pi _{R}^{{NR}}\) and R do not share information in this case. Consequently, R never shares information when \(F \le \Omega _{N}\).

Scenario 2 When \(F > \Omega _{I}\), similar to that shown by the proof of, we can obtain \(\Pi _{R}^{{IR}} < \Pi _{R}^{{NR}}\). Thus, R never shares information when.

Scenario 3 When, M’s remanufacturing strategy depends on R’s information sharing decision. Specifically, M remanufactures if R shares demand information, while M does not remanufacture if R does not share information. In anticipating M’s reaction, R makes her demand information sharing decision. Next, we determine R’s best information sharing strategy by comparing her equilibrium profits with and without information sharing.

  1. 3.1

    If \(c \le {{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), we have \(\Pi _{R}^{{IR}} = \Pi _{R}^{{NN}}\) and R does not share demand information.

  2. 3.2

    If \({{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), we have

    $$ \begin{gathered} \Pi _{R}^{{IR}} - \Pi _{R}^{{NN}} = \frac{{4\left( {1 + b} \right)^{3} c^{3} - 35b^{3} + 32x^{3} - 3b^{2} + 15b - 9}}{{192\left( {3 + b} \right)\left( {1 - b} \right)^{2} }} \hfill \\ {\text{ }} - \frac{{24\left( {b - x} \right)\left( {bc - 2b + c} \right)\left( {bc + c + 2x} \right)}}{{192\left( {3 + b} \right)\left( {1 - b} \right)^{2} }}. \hfill \\ \end{gathered} $$

    When \(f_{2} \left( c \right) = \Pi _{R}^{{IR}} - \Pi _{R}^{{NN}}\), we have \(f_{1} \left( {c = {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}} \right) > 0\) and \(f_{2} \left( c \right) > 0\) when \({{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\). Thus, we have \(\Pi _{R}^{{IR}} < \Pi _{R}^{{NN}}\), and R does not share demand information in this case.

  3. 3.3

    If \({{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le \bar{c}\), we have

    $$ \begin{gathered} \Pi _{R}^{{IR}} - \Pi _{R}^{{NR}} = \frac{{12c\left( {1 + b} \right)\left( {bc - 3b + c + 4x - 1} \right)}}{{192\left( {b + 3} \right)\left( {1 - b} \right)}} \hfill \\ {\text{ }} + \frac{{31b^{2} + 22b - 24x\left( {3b - 2x - 1} \right) - 5}}{{192\left( {b + 3} \right)\left( {1 - b} \right)}}. \hfill \\ \end{gathered} $$

By solving \(\Pi _{R}^{{IR}} - \Pi _{R}^{{NR}} = 0\) for \(c\), we have

$$c = \tau _{0} = \frac{{9b - 12x + 3 + 2\sqrt {6 - 3b^{2} - 3b} }}{{6\left( {1 + b} \right)}},{\text{ }}c = \tau ^{\prime}_{0} = \frac{{9b - 12x + 3 - 2\sqrt {6 - 3b^{2} - 3b} }}{{6\left( {b + 1} \right)}}$$

We have \(\Pi _{R}^{{IR}} \le \Pi _{R}^{{NN}}\) when \({{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le \tau _{0}\) and \(\Pi _{R}^{{IR}} > \Pi _{R}^{{NN}}\) when \(\tau _{0} < c < \bar{c}\).

By combining all of the results of scenario 3, R shares information only when \(\Omega _{1} < F \le \Omega _{2}\) and \(\tau _{0} < c < \bar{c}\).

Proof of Proposition 5 We calculate the ex ante total environmental impact in the equilibrium of each case as follows:

  • Case 1 In equilibrium NN, the ex ante expected environmental impact is

    $$E^{{NN}} = \int_{0}^{1} {q_{n}^{{NN}} } d\varepsilon = \frac{3}{8} - \frac{c}{4}$$
  • Case 2 In equilibrium NR, if \(c \le {{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have

    $$E^{{NR}} = \int_{0}^{1} {q_{n}^{{NR}} } d\varepsilon = \frac{3}{8} - \frac{c}{4}.$$

    If \({{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}} < c \le {{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have

    $$E^{{NR}} = \int_{0}^{1} {q_{n}^{{NR}} } d\varepsilon + \delta \left( {\int_{0}^{{\varepsilon _{0} }} 0 d\varepsilon + \int_{{\varepsilon _{0} }}^{1} {q_{r}^{{NR}} } d\varepsilon } \right) = \frac{{\kappa _{0} ^{2} \left( {2b\delta + 2b + 6\delta + 3} \right) + 8\left( {1 - b} \right)^{2} \left( {3 - 2c} \right)}}{{64\left( {1 - b} \right)^{2} }}.$$

    If \({{\left( {b - 4x + 3} \right)} \mathord{\left/ {\vphantom {{\left( {b - 4x + 3} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}} < c \le \bar{c}\), we have

    $$E^{{NR}} = \int_{0}^{1} {q_{n}^{{NR}} } d\varepsilon + \delta \int_{0}^{1} {q_{r}^{{NR}} } d\varepsilon = \frac{{\left( {\kappa _{0} + 2b - 2} \right)\delta + 5 - b - 4c - 2x\left( {1 + b} \right)}}{{4\left( {3 + b} \right)\left( {1 - b} \right)}}.$$
  • Case 3 In equilibrium IN, we have

    $$E^{{IN}} = \int_{0}^{1} {q_{n}^{{IN}} } d\varepsilon = \frac{3}{8} - \frac{c}{4}$$
  • Case 4 In equilibrium IR: If \(c \le {{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), we have

    $$E^{{IR}} = \int_{0}^{1} {q_{n}^{{IR}} } d\varepsilon = \frac{3}{8} - \frac{c}{4}.$$

    If \({{\left( {2\left( {b - x} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {2\left( {b - x} \right)} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\), we have

    $$E^{{IR}} = \int_{0}^{1} {q_{n}^{{IR}} } d\varepsilon + \delta \left( {\int_{0}^{{\varepsilon _{1} }} 0 d\varepsilon + \int_{{\varepsilon _{1} }}^{1} {q_{r}^{{IR}} } d\varepsilon } \right) = \frac{{\left( {3 + b + \kappa _{{\text{0}}} - 4x - 4c} \right)}}{{8\left( {1 - b} \right)}}$$

    If \({{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le \bar{c}\), we have

    $$E^{{IR}} = \int_{0}^{1} {q_{n}^{{IR}} } d\varepsilon + \delta \int_{0}^{1} {q_{r}^{{IR}} } d\varepsilon = \frac{{\left( {2\kappa _{{\text{0}}} + b - 1} \right)\delta + 5 - b - 4c - 2x\left( {1 + b} \right)}}{{4\left( {b + 3} \right)\left( {1 - b} \right)}}.$$

Next, we compare the environmental impact of each equilibrium to benchmark NN.

Scenario 1 \(F \le \Omega _{1}\):

  • If \(c \le {{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}}\), we have \(E^{{IR}} = E^{{NN}}\).

  • If \({{\left( {5b - 4x - 1} \right)} \mathord{\left/ {\vphantom {{\left( {5b - 4x - 1} \right)} {\left( {2\left( {1 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2\left( {1 + b} \right)} \right)}} < c \le {{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}}\delta \le {{\left( {1 + b} \right)} \mathord{\left/ {\vphantom {{\left( {1 + b} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\), we have \(E^{{IR}} - E^{{NN}} = \frac{{\left( {2\delta - \left( {1 + b} \right)} \right)\left( {2bc - 5b + 2c + 3} \right)^{2} }}{{64\left( {3 + b} \right)\left( {1 - b} \right)^{2} }}\)

    Obviously, \(E^{{IR}} \le E^{{NN}}\) when \(\delta \le {{\left( {1 + b} \right)} \mathord{\left/ {\vphantom {{\left( {1 + b} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\) and \(E^{{IR}} > E^{{NN}}\) when \(\delta > {{ = \left( {1 + b} \right)} \mathord{\left/ {\vphantom {{ = \left( {1 + b} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\).

  • If \({{\left( {b - 2x + 1} \right)} \mathord{\left/ {\vphantom {{\left( {b - 2x + 1} \right)} {\left( {1 + b} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + b} \right)}} < c \le \bar{c}\), we have

    $$E^{{NR}} - E^{{NN}} = \frac{{\left( {2\delta - \left( {1 + b} \right)} \right)\left( {2bc - 3b + 2c + 1} \right)}}{{8\left( {b + 3} \right)\left( {1 - b} \right)}}$$

Hence, \(E^{{IR}} \le E^{{NN}}\) when \(\delta \le {{\left( {1 + b} \right)} \mathord{\left/ {\vphantom {{\left( {1 + b} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\) and \(E^{{IR}} > E^{{NN}}\) when \(\delta > {{ = \left( {1 + b} \right)} \mathord{\left/ {\vphantom {{ = \left( {1 + b} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\).

Similarly, the proofs for when \(\Omega _{1} < F \le \Omega _{2}\) and \(F > \Omega _{2}\) are similar to the proof for when \(F \le \Omega _{1}\). We do not include the proofs to save space.

Proof of Proposition 6 By relaxing the constraint of \(c < \min \left\{ {{1 \mathord{\left/ {\vphantom {1 {2,1 - x}}} \right. \kern-\nulldelimiterspace} {2,1 - x}}} \right\}\), we have

$$ \tilde{q}_{n}^{{NN}} = \left\{ \begin{gathered} 0,{\text{ }}if{\text{ }}\varepsilon \le \frac{{2c - 1}}{4}, \hfill \\ \frac{1}{8}\left( {1 + 4\varepsilon - 2c} \right){\text{ }}if{\text{ }}\varepsilon > \frac{{2c - 1}}{4}{\text{. }} \hfill \\ \end{gathered} \right. $$

When \(c \le {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\), the ex ante profits of M and R are

$$ \tilde{\Pi }_{M}^{{NN}} = \int_{0}^{1} {\frac{{\left( {3 - 2c} \right)\left( {1 + 4\varepsilon - 2c} \right)}}{{32}}d\varepsilon = } \frac{{\left( {3 - 2{\mkern 1mu} c} \right)^{2} }}{{32}}, $$
$$\tilde{\Pi }_{R}^{{NN}} = \int_{0}^{1} {\frac{{\left( {1 + 4\varepsilon - 2c} \right)^{2} }}{{64}}d\varepsilon = } \frac{{12c^{2} - 36c + {\text{372}}}}{{192}}.$$

When \(c > {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\), the ex ante profits of M and R are

$$ \tilde{\Pi }_{M}^{{NN}} = \int_{0}^{{{{\left( {2c - 1} \right)} \mathord{\left/ {\vphantom {{\left( {2c - 1} \right)} 4}} \right. \kern-\nulldelimiterspace} 4}}} {0d\varepsilon } + \int_{{{{\left( {2c - 1} \right)} \mathord{\left/ {\vphantom {{\left( {2c - 1} \right)} 4}} \right. \kern-\nulldelimiterspace} 4}}}^{1} {\frac{{\left( {3 - 2c} \right)\left( {1 + 4\varepsilon - 2c} \right)}}{{32}}d\varepsilon } = \frac{{\left( {3 - 2{\mkern 1mu} c} \right)\left( {5 - 2{\mkern 1mu} c} \right)^{2} }}{{256}}, $$
$$ \tilde{\Pi }_{R}^{{NN}} = \int_{0}^{{{{\left( {2c - 1} \right)} \mathord{\left/ {\vphantom {{\left( {2c - 1} \right)} 4}} \right. \kern-\nulldelimiterspace} 4}}} {0d\varepsilon } + \int_{{{{\left( {2c - 1} \right)} \mathord{\left/ {\vphantom {{\left( {2c - 1} \right)} 4}} \right. \kern-\nulldelimiterspace} 4}}}^{1} {\frac{{\left( {1 + 4\varepsilon - 2c} \right)^{2} }}{{64}}d\varepsilon = } \frac{{\left( {5 - 2{\mkern 1mu} c} \right)^{3} }}{{768}}. $$

Next, we consider the cases of NR and IR with constraint \(q_{r} = q_{n}\). Similar to proofs of the previous problem, we obtain the optimal production quantities for the case of NR as

$$ \tilde{q}_{n}^{{NR}} = \tilde{q}_{r}^{{NR}} = \left\{ \begin{gathered} 0,{\text{ }}if{\text{ }}\varepsilon \le \frac{{c - x}}{4}, \hfill \\ \frac{{x + 4\varepsilon - c}}{{4\left( {3 + b} \right)}},{\text{ }}if{\text{ }}\varepsilon > \frac{{c - x}}{4}. \hfill \\ \end{gathered} \right. $$

The ex ante profits of M and R are written as

$$ \tilde{\Pi }_{M}^{{NR}} = \left\{ \begin{gathered} \frac{{\left( { - x - 2 + c} \right)^{2} }}{{8\left( {b + 3} \right)}} - F,{\text{ }}if{\text{ }}c \le x, \hfill \\ \frac{{\left( {2 + x - c} \right)\left( {4 + x - c} \right)^{2} }}{{64\left( {3 + b} \right)}} - F,{\text{ }}if{\text{ }}c > x, \hfill \\ \end{gathered} \right. $$
$$ \tilde{\Pi }_{M}^{{NR}} = \left\{ \begin{gathered} \frac{{\left( {4 + x - c} \right)^{2} \left( {{\text{1 + }}\delta } \right)}}{{32\left( {3 + b} \right)}},{\text{ }}if{\text{ }}c \le x, \hfill \\ \frac{{3\left( {c - x} \right)\left( {4 + c - x} \right) + 16}}{{48\left( {3 + b} \right)}},{\text{ }}if{\text{ }}c > x. \hfill \\ \end{gathered} \right. $$

Unlike in the case with no remanufacturing, M remanufactures when \(\tilde{\Pi }_{M}^{{NR}} < \tilde{\Pi }_{M}^{{NN}}\). Let \(F = \Phi _{N}\) be \(\tilde{q}_{r} = \tilde{q}_{n}\) the unique solution of \(g_{1} (F) = 0\) where \(g_{1} (F) = \tilde{\Pi }_{M}^{{NR}} - \tilde{\Pi }_{M}^{{NN}}\). Thus, M remanufactures when \(0 < F \le \Phi _{N}\). With information, if M remanufactures under the constraint of, the optimal production quantities are \(\tilde{q}_{n}^{{IR}} = \tilde{q}_{r}^{{IR}} = {{\left( {1 + x + 2\varepsilon - c} \right)} \mathord{\left/ {\vphantom {{\left( {1 + x + 2\varepsilon - c} \right)} {\left( {4\left( {3 + b} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {4\left( {3 + b} \right)} \right)}}\). The expect profits of M and R are

$$ \tilde{\Pi }_{M}^{{IR}} = \frac{{3\left( {x - c} \right)\left( {4 + x - c} \right) + 13}}{{24\left( {b + 3} \right)}} - F,\tilde{\Pi }_{R}^{{IR}} = \frac{{3\left( {x - c} \right)\left( {4 + x - c} \right) + 13}}{{48\left( {b + 3} \right)}}. $$

Let \(F = \Phi _{I}\) be the unique solution of \(g_{2} (F) = 0\), where \(g_{2} (F) = \tilde{\Pi }_{M}^{{IR}} - \tilde{\Pi }_{M}^{{IN}}\). M remanufactures when \(0 < F \le \Phi _{I}\). As \(\Phi _{N} < \Phi _{I}\), M always remanufactures when \(F \le \Phi _{N}\) and never remanufactures when \(F > \Phi _{I}\) regardless of whether R shares her information. When \(\max \left\{ {\Phi _{N} ,0} \right\} < F \le \Phi _{I}\), M remanufactures if R shares demand information and does not without demand information. In anticipating M’s reaction, R makes her information sharing decision by comparing her optimal profits from cases \(IR\) and \(NN\). First, if \(c \le {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\), then

$$ \tilde{\Pi }_{R}^{{IR}} - \tilde{\Pi }_{R}^{{NN}} = - \frac{{12\left( {2 + b} \right)c^{2} - 12\left( {3b - 2x + 5} \right)c - 12x^{2} + 31b - 48x + 41}}{{192\left( {3 + b} \right)}}. $$

By solving \(\tilde{\Pi }_{R}^{{IR}} - \tilde{\Pi }_{R}^{{NN}} = 0\) for c, we obtain the feasible solution as

$$ l_{1}^{\prime } = \frac{{15 + 9b - 6x - \sqrt {36x\left( {x + 1} \right)\left( {b + 3} \right) - 12b^{2} - 39b - 21} }}{{12\left( {2 + b} \right)}}. $$

If \(c > {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\), then

$$ \tilde{\Pi }_{R}^{{IR}} - \tilde{\Pi }_{R}^{{NN}} = \frac{{8\left( {b + 3} \right)c^{3} - 12\left( {5b + 11} \right)c^{2} + 6\left( {25b - 16x + 43} \right)c + 48x\left( {x + 4} \right) - 125b - 167}}{{768\left( {b + 3} \right)}}. $$

Let \(f_{3} \left( c \right) = \tilde{\Pi }_{R}^{{IR}} - \tilde{\Pi }_{R}^{{NN}}\) and \(l^{\prime\prime}_{1}\) be the unique solution of \(f_{3} \left( c \right) = 0\) for the feasible region. Assume that

$$ l_{1} = \left\{ \begin{gathered} l^{\prime}_{1} ,{\text{ }}if{\text{ }}c \le \frac{1}{2}, \hfill \\ l^{\prime\prime}_{1} ,{\text{ }}if{\text{ }}c > \frac{1}{2}. \hfill \\ \end{gathered} \right. $$

We have \(\tilde{\Pi }_{R}^{{IR}} > \tilde{\Pi }_{R}^{{NN}}\) if \(c > l_{1}\) and \(\tilde{\Pi }_{R}^{{IR}} \le \tilde{\Pi }_{R}^{{NN}}\) if \(c \le l_{1}\). Hence, R shares demand information with M when \(\max \left\{ {\Phi _{N} ,0} \right\} < F \le \Phi _{I}\) and \(c > l_{1}\).

Appendix B: Additional Analysis

In the main body of the paper, we do not consider constraint \(q_{r} \le q_{n}\). In Appendix B, we incorsporate the constraint into our model. Thus, the model uses nonlinear programming. We use KKT conditions to solve the nonlinear programming problem. Due to the complexity of nonlinear programming, we conduct a numerical study to present the results and demonstrate the validity of our main results.

In the following, we show the retailer’s information sharing decision in Fig. 

Fig. 7
figure 7

Retailer’s information sharing decision (\(x = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\))

7. Then, we examine the economic impacts of remanufacturing and information sharing on the manufacturer and retailer in Fig. 

Fig. 8
figure 8

Economic impact of remanufacturing and information sharing (\(x = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\))

8. Finally, we explore the environmental impact of remanufacturing and information sharing on the environment.

Figure 7 shows that the retailer’s decision does not change when taking constraint \(q_{r} \le q_{n}\) into consideration. We find that the retailer shares her information with the manufacturer if and only if the fixed remanufacturing cost is moderate and the remanufacturing cost savings are high.

As shown in Figure 8, when the manufacturer chooses to remanufacture, this always creates win-win outcomes. When the manufacturer abandons remanufacturing, no impact occurs. The results are same as those outlined in Proposition 4.

As shown in Figure

Fig. 9
figure 9

Environmental impact (\(x = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},b = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\))

9, intuitively, when the manufacturer does not remanufacture, there is no impact on the environment. When the manufacturer embraces remanufacturing, the environment may improve or worsen depending on the environmental saving parameter. The results are quite similar to those outlined in Proposition 10.

Appendix C: Two-Period Model

In the main model, we explore the retailer’s information strategy adopted within a single period. Next, we introduce a two-period model to examine whether the retailer’s information strategy obtained from our main model still holds. In the model, the manufacturer produces only new products in the first period, but he may make new products and remanufactured products in the second period. The new product price in the first period is, \(p_{1} \left( {q_{1} } \right) = 1 + \varepsilon - q_{1}\), and the prices of new and remanufactured products in the second period are \(p_{n} \left( {q_{n} ,q_{r} } \right) = 1 + \varepsilon - q_{n} - bq_{r}\) and \(p_{r} \left( {q_{n} ,q_{r} } \right) = x + \varepsilon - q_{r} - q_{n}\), respectively. We assume that the production cost of the new product is not too high, i.e., \(c \le \left\{ {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},{{\left( {9 - 8{\mkern 1mu} x - b^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {9 - 8{\mkern 1mu} x - b^{2} } \right)} {2{\mkern 1mu} \left( {5 - b^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {2{\mkern 1mu} \left( {5 - b^{2} } \right)}}} \right\}\), so that the quantity of the new product is not equal to zero and the quantity of the remanufactured product is less than that of the new product, e.g., \(q_{r} \le q_{1}\). Under the case with \(NR\), the profit functions of the manufacturer and retailer are

$$ E\left[ {\pi _{M}^{{NR}} } \right] = \left( {w_{1}^{{NR}} - c} \right)E\left[ {q_{1}^{{NR}} } \right] + \left( {w_{n}^{{NR}} - c} \right)E\left[ {q_{n}^{{NR}} } \right] + w_{r}^{{NR}} E\left[ {q_{r}^{{NR}} } \right] - F, $$
(25)
$$ \pi _{R}^{{NR}} = \left( {p_{{\text{1}}}^{{NR}} - w_{{\text{1}}}^{{NR}} } \right)q_{{\text{1}}}^{{NR}} {\text{ + }}\left( {p_{n}^{{NR}} - w_{n}^{{NR}} } \right)q_{n}^{{NR}} + \left( {p_{r}^{{NR}} - w_{r}^{{NR}} } \right)q_{r}^{{NR}} , $$
(26)

where subscript \({\text{1}}\) denotes the first period, and subscripts \(n\) and \(r\) denote new and remanufactured products, respectively. For the case of \(IR\), the corresponding profit functions are

$$ \pi _{M}^{{IR}} = \left( {w_{{\text{1}}}^{{IR}} - c} \right)q_{{\text{1}}}^{{IR}} + \left( {w_{n}^{{IR}} - c} \right)q_{n}^{{IR}} + w_{r}^{{IR}} q_{r}^{{IR}} - F $$
(27)
$$ \pi _{R}^{{IR}} = \left( {p_{{\text{1}}}^{{IR}} - w_{{\text{1}}}^{{IR}} } \right)q_{{\text{1}}}^{{IR}} + \left( {p_{n}^{{IR}} - w_{n}^{{IR}} } \right)q_{n}^{{IR}} + \left( {p_{r}^{{IR}} - w_{r}^{{IR}} } \right)q_{r}^{{IR}} . $$
(28)

In Fig. 10, we show the retailer’s information sharing decision made over of two periods.

Fig. 10
figure 10

Retailer’s information sharing decision in a two-period setting

We find that the retailer shares her information with the manufacturer if and only if the fixed remanufacturing cost is moderate and the remanufacturing cost savings are high, which is consistent with the retailer’s information strategy obtained from the single-period model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Wang, Q., Li, G. et al. To share or not to share? When information sharing meets remanufacturing. Ann Oper Res 329, 815–846 (2023). https://doi.org/10.1007/s10479-021-04151-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04151-8

Keywords

Navigation