Skip to main content
Log in

Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration

  • S.I.: Advances of OR in Commodities and Financial Modelling
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, a deterministic inventory control model with deterioration is developed. Here, the deterioration rate follows stochastic deterioration, especially Weibull distribution deterioration. A time-dependent demand approach is introduced to show the applicability of our proposed model and to be up-to-date with respect to time. The main purpose of the paper is to investigate the optimal retailer’s replenishment decisions for deteriorating items including time-dependent demand for demonstrating more practical circumstances within economic-order quantity frameworks. Keeping in mind the criterion of modern era, we consider that the holding cost is totally dependent on time, and shortages are allowed for this model. Subject to the formulated model, we minimize the total inventory cost. The mathematical model is explored by numerical examples to validate the proposed model. A sensitivity analysis of the optimal solution with regard to important parameters is also carried out to elaborate the quality, e.g., stability, of our result and to possibly modify our model. The paper ends with a conclusion and an outlook to future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. The Journal of the Operational Research Society, 46, 658–662.

    Article  Google Scholar 

  • Annadurai, K., & Uthayakumar, R. (2015). Decaying inventory model with stock-dependent demand and shortages under two-level trade credit. International Journal of Advanced Manufacturing Technology, 77, 525–543.

    Article  Google Scholar 

  • Begum, R., Sahu, S. K., & Sahoo, R. R. (2010). An EOQ model for deteriorating items with Weibull distribution deterioration, unit production cost with quadratic demand and shortages. Applied Mathematical Sciences, 4(6), 271–288.

  • Chao, X., Gong, X., & Zheng, S. (2016). Optimal pricing and inventory policies with reliable and random-yield suppliers: Characterization and comparison. Annals of Operations Research, 241, 35–51.

    Article  Google Scholar 

  • Chung, K., & Ting, P. (1993). An heuristic for replenishment of deteriorating items with a linear trend in demand. The Journal of the Operational Research Society, 44, 1235–1241.

    Article  Google Scholar 

  • Covert, R. P., & Philip, G. S. (1973). An EOQ model for items with weibull distribution deterioration. AIIE Transactions, 5, 323–326.

    Article  Google Scholar 

  • Das, D., Roy, A., & Kar, S. (2015). A multi-warehouse partial backlogging inventory model for deteriorating items under inflation when a delay in payment is permissible. Annals of Operations Research, 226, 133–162.

    Article  Google Scholar 

  • Dave, U., & Patel, L. K. (1981). (\(T, S_j\)) policy inventory model for deteriorating items with time proportional demand. The Journal of the Operational Research Society, 32, 137–142.

    Article  Google Scholar 

  • De, S. K., & Sana, S. S. (2015). Backlogging EOQ model for promotional effort and selling price sensitive demand—An intuitionistic fuzzy approach. Annals of Operations Research, 233, 57–76.

    Article  Google Scholar 

  • Donaldson, W. A. (1977). Inventory replenishment policy for a linear trend in demand-an analytical solution. Operational Research Quaterly, 28(3), 663–670.

    Article  Google Scholar 

  • Ghare, P. M., & Schrader, G. P. (1963). A model for an exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238–243.

    Google Scholar 

  • Ghoreishi, M., Mirzazadeh, A., & Weber, G. W. (2014). Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns. Optimization, 63(12), 1785–1804.

    Article  Google Scholar 

  • Ghoreishi, M., Weber, G. W., & Mirzazadeh, A. (2015). An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation and selling price-dependent demand and customer returns. Annals of Operations Research, 226, 221–238.

    Article  Google Scholar 

  • Ghosh, S. K., & Chaudhuri, K. S. (2004). An order-level inventory model for a deteriorating item with Weibull distribution deterioration, time-quadratic demand and shortages. Advanced Modelling and Optimization, 6(1), 21–35.

    Google Scholar 

  • Giri, B. C., Goswami, A., & Chaudhuri, K. S. (1996). An EOQ model for deteriorating items with time-varying demand and costs. The Journal of the Operational Research Society, 47(11), 1398–1405.

    Article  Google Scholar 

  • Glock, C. H., Ries, J. M., & Schwindl, K. (2015). Ordering policy for stock-dependent demand rate under progressive payment scheme: A comment. International Journal of Systems Science, 46(5), 872–877.

    Article  Google Scholar 

  • Goh, M. (1994). EOQ models with general demand and holding costs functions. European Journal of Operational Research, 73(1), 50–54.

    Article  Google Scholar 

  • Hargia, M. A., & Benkherouf, L. (1994). Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand. European Journal of Operational Research, 79(1), 123–137.

    Article  Google Scholar 

  • Jalan, A. K., Giri, R. R., & Chaudhuri, K. S. (1996). EOQ model for items with Weibull distribution deterioration, shortages and trended demand. International Journal of System Science, 27(9), 851–855.

    Article  Google Scholar 

  • Khmelnitsky, E., & Singer, G. (2015). An optimal inventory management problem with reputation-dependent demand. Annals of Operations Research, 231, 305–316.

    Article  Google Scholar 

  • Lashgari, M., Taleizadeh, A. A., & Ahmadi, A. (2016). Partial up-stream advanced payment and partial down-stream delayed payment in a three-level supply chain. Annals of Operations Research, 238, 329–354.

    Article  Google Scholar 

  • Levin, R. I., McLaughlin, C. P., Lamone, R. P., & Kottas, J. F. (1972). Production operation management: Contemporary policy for managing operating system. New York: McGraw-Hill. 373.

    Google Scholar 

  • Liao, J. J. (2008). An EOQ model with non instantaneous receipt and exponentially deteriorating items under two-level trade credit. International Journal of Production Economics, 113(2), 852–861.

    Article  Google Scholar 

  • Mishra, V. K., Singh, L. S., & Kumar, R. (2013). An inventory model for deteriorating items with time-dependent demand and time-varying holding cost under partial backlogging. Journal of Industrial Engineering International. doi:10.1186/2251-712X-9-4.

  • Pervin, M., Mahata, G. C., & Roy, S. K. (2015). An inventory model with demand declining market for deteriorating items under trade credit policy. International Journal of Management Science and Engineering Management. doi:10.1080/17509653.2015.1081082.

  • Roy, A. (2008). An inventory model for deteriorating items with price dependent demand and time-varying holding cost. Advanced Modelling and Optimization, 10(1), 25–37.

    Google Scholar 

  • Sarkar, S., & Chakrabarti, T. (2013). An EPQ model having Weibull distribution deterioration with exponential demand and production with shortages under permissible delay in payments. Mathematical Theory and Modelling, 3(1), 1–7.

    Google Scholar 

  • Teng, J. T., Chang, H. J., Dye, C. Y., & Hung, C. H. (2002). An optimal replenishment policy for deterioratng items with time-varying demand and partial backlogging. Operations Research Letters, 30(6), 387–393.

    Article  Google Scholar 

  • Tripathi, R. P., & Pandey, H. S. (2013). An EOQ model for deteriorating item with Weibull time dependent demand rate under trade credits. International Journal of Information and Management Sciences, 24, 329–347.

    Google Scholar 

  • Yadav, R. K., & Vats, A. K. (2014). A deteriorating inventory model for quadratic demand and constant holding cost with partial backlogging and inflation. IOSR Journal of Mathematics (IOSR-JM), 10(3), 47–52.

    Article  Google Scholar 

  • Yang, H. L., Teng, J. T., & Chern, M. S. (2001). Deterministic inventory lot size models under inflation with shortages and deterioration for fluctuating demand. Naval Research Logistics (NRL), 48(2), 144–158.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is very much thankful to University Grants Commission (UGC) of India for providing financial support to continue this research work under [MANF(UGC)] scheme: Sanctioned letter number [F1-17.1/2012-13/MANF-2012-13-MUS-WES-19170 /(SA-III/Website)] dated 28/02/2013. The authors would like to express their cordial thanks to the Editor-in-Chief and anonymous reviewer for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Kumar Roy.

Appendix

Appendix

The necessary optimality conditions for finding the optimal values of T and \(t_1\) are calculated by the following derivations:

$$\begin{aligned} \frac{\partial TC}{\partial T}= & {} \frac{-1}{T^2}\left[ A+(h+c)(k-a)\left\{ \frac{t_1^2}{2}-\frac{\alpha \beta t_1^{2+\beta }}{(\beta +1)(2+\beta )}\right\} \right. \\&-\,(h+c)b\left\{ \frac{t_1^3}{6}-\frac{\alpha \beta t_1^{3+\beta }}{2(\beta +2)(3+\beta )}\right\} +\gamma (k-a)\left\{ \frac{t_1^3}{3}-\frac{\alpha \beta t_1^{3+\beta }}{(\beta +1)(3+\beta )}\right\} \\&-\,\gamma b\left\{ \frac{t_1^4}{8}-\frac{\alpha \beta t_1^{4+\beta }}{2(\beta +2)(4+\beta )}\right\} +c\delta a(T-t_1)+\frac{1}{2}c\delta b\left( T^2-t_1^2\right) \\&+\,c\left\{ (k-a)t_1+\frac{bt_1^2}{2}\right\} +Qc_2\left\{ (T-t_1) +(Tt_1^\beta -\frac{T^{\beta +1}}{\beta +1}-\frac{\beta t_1^{\beta +1}}{\beta +1})\right\} \\&+\,ac_2\left[ \frac{2Tt_1+3t_1^2-T^2}{2}+\frac{\alpha }{\beta +1}\left\{ t_1^{1 +\beta }(T-t_1)-\frac{T^{2+\beta }- t_1^{2+\beta }}{2+\beta }\right\} \right. \\&\left. +\,\alpha \left\{ \frac{T^{2+\beta }-t_1^{2+\beta }}{2+\beta }-\frac{t_1T^{1 +\beta }-t_1^{2+\beta }}{\beta +1}\right\} \right] +bc_2\left[ \left\{ \frac{(T-t_1)t_1^2}{2} -\frac{T^3-t_1^3}{6}\right\} \right. \\&+\,\frac{\alpha }{2+\beta }\left\{ t_1^{2+\beta }(T-t_1)-\frac{T^{3+\beta }- t_1^{3+\beta }}{3+\beta }\right\} \\&\left. +\,\frac{\alpha }{2}\left\{ \frac{T^{3+\beta }-t_1^{3+\beta }}{3+\beta } -\frac{t_1^2T^{1+\beta }-t_1^{1+\beta }}{\beta +1}\right\} \right] \\&\left. +\,s(1-\delta )\left\{ a(T-t_1) +\frac{1}{2}b\left( T^2-t_1^2\right) \right\} \right] +\frac{1}{T}\left[ (h+c)(k-a)\left\{ t_1\frac{\partial t_1}{\partial T}\right. \right. \\&\left. -\,\frac{\alpha \beta t_1^{1+\beta }\frac{\partial t_1}{\partial T}}{\beta +1}\right\} -(h+c)b\left\{ \frac{t_1^2\frac{\partial t_1}{\partial T}}{2}-\frac{\alpha \beta t_1^{2+\beta }\frac{\partial t_1}{\partial T}}{2(\beta +2)}\right\} +\gamma (k-a)\left\{ t_1^2\frac{\partial t_1}{\partial T}\right. \\&\left. -\,\frac{\alpha \beta t_1^{2+\beta }\frac{\partial t_1}{\partial T}}{\beta +1}\right\} -\gamma b\left\{ \frac{t_1^3\frac{\partial t_1}{\partial T}}{2}-\frac{\alpha \beta t_1^{3+\beta }\frac{\partial t_1}{\partial T}}{2(\beta +2)}\right\} +c\delta a\left( 1-\frac{\partial t_1}{\partial T}\right) \\&+\,c\delta b\left( T-t_1\frac{\partial t_1}{\partial T}\right) +c\left\{ (k-a)\frac{\partial t_1}{\partial T}+bt_1\frac{\partial t_1}{\partial T}\right\} \\&+\,Qc_2\left\{ \left( 1-\frac{\partial t_1}{\partial T}\right) +t_1^\beta +T\beta t_1^{\beta -1}\frac{\partial t_1}{\partial T}-T^\beta -\beta t_1^\beta \frac{\partial t_1}{\partial T}\right\} \\&+\,ac_2\left[ t_1+T\frac{\partial t_1}{\partial T}+3t_1\frac{\partial t_1}{\partial T}-T+\frac{\alpha }{\beta +1}\left\{ (1+\beta )t_1^\beta \frac{\partial t_1}{\partial T}(T-t_1)\right. \right. \\&\left. +\,t_1^{1+\beta }\left( 1-2\frac{\partial t_1}{\partial T}\right) -T^{1+\beta }\right\} +\alpha \left\{ T^{1+\beta }-t_1^{1+\beta }\frac{\partial t_1}{\partial T}-t_1T^\beta -\frac{T^{1+\beta }\frac{\partial t_1}{\partial T}}{1+\beta }\right. \\&\left. \left. +\,\frac{(2+\beta )t_1^{1+\beta }\frac{\partial t_1}{\partial T}}{1+\beta }\right\} \right] +bc_2\left[ \left\{ \frac{\left( 1 -\frac{\partial t_1}{\partial T}\right) t_1^2}{2}+t_1\frac{\partial t_1}{\partial T}(T-t_1)\right. \right. \\&\left. -\,\frac{T^2}{2}+\frac{t_1^2\frac{\partial t_1}{\partial T}}{2}\right\} +\frac{\alpha }{2+\beta }\left\{ (2+\beta )t_1^{1+\beta }\frac{\partial t_1}{\partial T}(T-t_1)\right. \\&\left. \left. +\,\left( t_1^{2+\beta }-T^{2+\beta }\right) \right\} +\frac{\alpha }{2}\left\{ T^{2+\beta }-t_1^{2+\beta }\frac{\partial t_1}{\partial T}-\frac{2t_1T^{1+\beta }\frac{\partial t_1}{\partial T}}{\beta +1}-t_1^2T^\beta +t_1^\beta \frac{\partial t_1}{\partial T}\right\} \right] \\&\left. +\, s(1-\delta )\left\{ a\left( 1-\frac{\partial t_1}{\partial T}\right) +b\left( T-t_1\frac{\partial t_1}{\partial T}\right) \right\} \right] , \end{aligned}$$
$$\begin{aligned} \frac{\partial TC}{\partial t_1}= & {} (h+c)(k-a)\left\{ t_1-\frac{\alpha \beta t_1^{1+\beta }}{\beta +1}\right\} -(h+c)b\left\{ \frac{t_1^2}{2}-\frac{\alpha \beta t_1^{2+\beta }}{2(\beta +2)}\right\} \\&+\,\gamma (k-a)\left\{ t_1^2-\frac{\alpha \beta t_1^{2+\beta }}{\beta +1}\right\} -\gamma b\left\{ \frac{t_1^3}{2}-\frac{\alpha \beta t_1^{3+\beta }}{2(\beta +2)}\right\} -c\delta (a+bt_1)\\&+c\left\{ (k-a)+bt_1\right\} +Qc_2\left\{ -1+T\beta t_1^{\beta -1}-\beta t_1^\beta \right\} \\&+\,ac_2\left[ T+3t_1+\frac{\alpha }{\beta +1}\left\{ (1+\beta )t_1^\beta (T-t_1)\right\} +\alpha \left\{ \frac{t_1^{1+\beta }}{\beta +1}- \frac{T^{1+\beta }}{\beta +1}\right\} \right] \\&+\,bc_2\left[ t_1(T-t_1)+\alpha t_1^{1+\beta }(T-t_1)+\frac{\alpha }{2}\left\{ t_1^\beta -t_1^{2+\beta }-\frac{2t_1T^{1+\beta }}{1+\beta }\right\} \right] \\&-\,s(1-\delta )(a+bt_1), \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 TC}{\partial t_1^2}= & {} (h+c)(k-a)\left( 1-\alpha \beta t_1^\beta \right) -(h+c)b\left( t_1-\frac{\alpha \beta t_1^{1+\beta }}{2}\right) \\&+\,\gamma (k-a)\left( 2t_1-\frac{\alpha \beta (2+\beta )t_1^{1+\beta }}{\beta +1}\right) -\gamma b\left\{ \frac{3t_1^2}{2}-\frac{\alpha \beta (3+\beta )t_1^{2 +\beta }}{2(\beta +2)}\right\} \\&+\,cb(1-\delta ) +Qc_2\left\{ T\beta (\beta -1)t_1^{\beta -2} -\beta ^2t_1^{\beta -1}\right\} +ac_2\left\{ 3+\alpha \beta t_1^{\beta -1}(T-t_1)\right\} \\&+\,bc_2\left[ (T-2t_1)+\alpha (1+\beta )t_1^\beta (T-t_1) -\alpha t_1^{1+\beta }+\frac{\alpha }{2}\left\{ \beta t_1^{\beta -1}-(2+\beta )t_1^{1+\beta }\right. \right. \\&\left. \left. -\,\frac{2T^{1+\beta }}{1+\beta }\right\} \right] -sb(1-\delta ), \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 TC}{\partial t_1\partial T}= & {} (h+c)(k-a)\left( \frac{\partial t_1}{\partial T}-\alpha \beta t_1^\beta \frac{\partial t_1}{\partial T}\right) -(h+c)b\left( t_1\frac{\partial t_1}{\partial T}-\frac{\alpha \beta t_1^{1+\beta }}{2}\frac{\partial t_1}{\partial T}\right) \\&+\gamma (k-a)\left\{ 2t_1\frac{\partial t_1}{\partial T}-\frac{\alpha \beta (2+\beta ) t_1^{1+\beta }}{(\beta +1)}\frac{\partial t_1}{\partial T}\right\} \\&-\,\gamma b\left\{ \frac{3t_1^2}{2}\frac{\partial t_1}{\partial T}-\frac{\alpha \beta (3+\beta ) t_1^{2+\beta }}{2(\beta +2)}\frac{\partial t_1}{\partial T}\right\} +cb(1-\delta )\frac{\partial t_1}{\partial T}\\&+\,Qc_2\left\{ \beta t_1^{\beta -1}+T\beta (\beta -1) t_1^{\beta -2}\frac{\partial t_1}{\partial T}-\beta ^2t_1^{\beta -1}\frac{\partial t_1}{\partial T}\right\} \\&+\,ac_2\left[ 1+3\frac{\partial t_1}{\partial T}+ \alpha \beta t_1^{\beta -1}(T-t_1)\frac{\partial t_1}{\partial T}+\alpha t_1^\beta \left( 1-\frac{\partial t_1}{\partial T}\right) \right. \\&\left. +\,\alpha \left( \frac{t_1^\beta }{\beta +1} \frac{\partial t_1}{\partial T}-T^\beta \right) \right] +bc_2\left[ (T-2t_1)\frac{\partial t_1}{\partial T}+\alpha (1+\beta )t_1^\beta (T-t_1)\frac{\partial t_1}{\partial T}\right. \\&+\,\alpha t_1^{1+\beta }\left( 1-\frac{\partial t_1}{\partial T}\right) +\frac{\alpha }{2}\left\{ \beta t_1^{\beta -1}\frac{\partial t_1}{\partial T}- (2+\beta )t_1^{1+\beta }\frac{\partial t_1}{\partial T}-\frac{2T^{1+\beta }}{1+\beta }\frac{\partial t_1}{\partial T}\right. \\&\left. \left. -\,2t_1T^\beta \right\} \right] -sb(1-\delta ) \frac{\partial t_1}{\partial T}, \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 TC}{\partial T^2}= & {} \frac{2}{T^3}\left[ A+(h+c)(k-a)\left\{ \frac{t_1^2}{2}-\frac{\alpha \beta t_1^{2+\beta }}{(\beta +1)(2+\beta )}\right\} -(h+c)b\left\{ \frac{t_1^3}{6}\right. \right. \\&\left. -\,\frac{\alpha \beta t_1^{3+\beta }}{2(\beta +2)(3+\beta )}\right\} +\gamma (k-a)\left\{ \frac{t_1^3}{3}-\frac{\alpha \beta t_1^{3+\beta }}{(\beta +1)(3+\beta )}\right\} \\&-\,\gamma b\left\{ \frac{t_1^4}{8}-\frac{\alpha \beta t_1^{4+\beta }}{2(\beta +2)(4+\beta )}\right\} +c\delta a(T-t_1)\\&+\,\frac{1}{2}c\delta b(T^2-t_1^2)+c\left\{ (k-a)t_1+\frac{bt_1^2}{2}\right\} \\&+\,Qc_2\left\{ (T-t_1) +\left( Tt_1^\beta -\frac{T^{\beta +1}}{\beta +1}-\frac{\beta t_1^{\beta +1}}{\beta +1}\right) \right\} \\&+\,ac_2\left[ \frac{2Tt_1+3t_1^2-T^2}{2} +\frac{\alpha }{\beta +1}\left\{ t_1^{1+\beta }(T-t_1)-\frac{T^{2+\beta }- t_1^{2+\beta }}{2+\beta }\right\} \right. \\&\left. +\,\alpha \left\{ \frac{T^{2+\beta } -t_1^{2+\beta }}{2+\beta }-\frac{t_1T^{1+\beta }-t_1^{2+\beta }}{\beta +1}\right\} \right] +bc_2\left[ \left\{ \frac{(T-t_1)t_1^2}{2}-\frac{T^3-t_1^3}{6}\right\} \right. \\&+\,\frac{\alpha }{2+\beta }\left\{ t_1^{2+\beta }(T-t_1)-\frac{T^{3+\beta }- t_1^{3+\beta }}{3+\beta }\right\} +\frac{\alpha }{2}\left\{ \frac{T^{3+\beta } -t_1^{3+\beta }}{3+\beta }\right. \\&\left. \left. \left. -\,\frac{t_1^2T^{1+\beta }-t_1^{1+\beta }}{\beta +1}\right\} \right] +s(1-\delta )\left\{ a(T-t_1)+\frac{1}{2}b\left( T^2-t_1^2\right) \right\} \right] \\&+\,\frac{1}{T}\left[ (h+c)(k-a)\left\{ \left( \frac{\partial t_1}{\partial T}\right) ^2+t_1\frac{\partial ^2 t_1}{\partial T^2}-\alpha \beta t_1^\beta \left( \frac{\partial t_1}{\partial T}\right) ^2-\frac{\alpha \beta t_1^{1+\beta }}{1+\beta }\frac{\partial ^2 t_1}{\partial T^2}\right\} \right. \\&-\,(h+c)b\left\{ t_1\left( \frac{\partial t_1}{\partial T}\right) ^2+\frac{t_1^2}{2}\frac{\partial ^2 t_1}{\partial T^2}-\frac{\alpha \beta t_1^{1+\beta }}{2} \left( \frac{\partial t_1}{\partial T}\right) ^2-\frac{\alpha \beta t_1^{2+\beta }}{2(2+\beta )}\frac{\partial ^2 t_1}{\partial T^2}\right\} \\&+\,\gamma (k-a)\left\{ 2t_1\left( \frac{\partial t_1}{\partial T}\right) ^2+t_1^2\frac{\partial ^2 t_1}{\partial T^2}-\frac{\alpha \beta (2+\beta )t_1^{1+\beta }}{1+\beta } \left( \frac{\partial t_1}{\partial T}\right) ^2-\frac{\alpha \beta t_1^{2+\beta }}{1+\beta }\frac{\partial ^2 t_1}{\partial T^2}\right\} \\&-\,\gamma b\left\{ \frac{3t_1^2}{2} \left( \frac{\partial t_1}{\partial T}\right) ^2+\frac{t_1^3}{2}\frac{\partial ^2 t_1}{\partial T^2}-\frac{\alpha \beta (3+\beta )t_1^{2+\beta }}{2(2+\beta )}\left( \frac{\partial t_1}{\partial T}\right) ^2- \frac{\alpha \beta t_1^{3+\beta }}{2(2+\beta )}\frac{\partial ^2 t_1}{\partial T^2}\right\} \\&-\,c\delta a\frac{\partial ^2 t_1}{\partial T^2}+c\delta b\left\{ 1-t_1\frac{\partial ^2 t_1}{\partial T^2}-\left( \frac{\partial t_1}{\partial T}\right) ^2\right\} +c\left\{ (k-a+bt_1)\frac{\partial ^2 t_1}{\partial T^2} +b\left( \frac{\partial t_1}{\partial T}\right) ^2\right\} \\&+\,Qc_2\left\{ 2\beta t_1^{\beta -1}\frac{\partial t_1}{\partial T}-\frac{\partial ^2 t_1}{\partial T^2}+T\beta (\beta -1) \left( \frac{\partial t_1}{\partial T}\right) ^2+T\beta t_1^{\beta -1}\frac{\partial ^2 t_1}{\partial T^2}\right. \\&\left. -\,\beta T^{\beta -1}-\beta ^2t_1^{\beta -1} \left( \frac{\partial t_1}{\partial T}\right) ^2-\beta t_1^\beta \frac{\partial ^2 t_1}{\partial T^2}\right\} +ac_2\left[ 2\frac{\partial t_1}{\partial T} +T\frac{\partial ^2t_1}{\partial T^2}\right. \\&+\,3\left( \frac{\partial t_1}{\partial T}\right) ^2+3t_1\frac{\partial ^2 t_1}{\partial T^2}-1 +\frac{\alpha }{\beta +1}\left\{ (1+\beta )\beta t_1^{\beta -1}(T-t_1)\left( \frac{\partial t_1}{\partial T}\right) ^2\right. \\&+\,(1+\beta )t_1^\beta \left( 2-\frac{\partial t_1}{\partial T}\right) \frac{\partial t_1}{\partial T}+(1+\beta )t_1^\beta \frac{\partial ^2 t_1}{\partial T^2}(T-t_1)+(1+\beta )t_1^\beta \frac{\partial t_1}{\partial T}\\&\left. -\,2t_1^{1+\beta }\frac{\partial ^2 t_1}{\partial T^2}\right\} +\alpha \beta T^\beta +\alpha \left\{ t_1^\beta \left( \frac{\partial t_1}{\partial T}\right) ^2-t_1^{1+\beta }\frac{\partial ^2 t_1}{\partial T^2}-2T^\beta \frac{\partial t_1}{\partial T}-t_1\beta T^{\beta -1}\right. \\&\left. \left. -\,\frac{T^{\beta +1}}{\beta +1}\frac{\partial ^2 t_1}{\partial T^2}+\frac{(2+\beta )t_1^{\beta +1}}{\beta +1}\frac{\partial ^2 t_1}{\partial T^2}\right\} \right] +bc_2\left[ \left\{ \left( \frac{\partial t_1}{\partial T}\right) ^2(T-t_1)\right. \right. \\&\left. \left. +\,t_1(T-t_1)\frac{\partial ^2 t_1}{\partial T^2}+t_1 \frac{\partial t_1}{\partial T}\left( 1-\frac{\partial t_1}{\partial T}\right) -T\right\} + \alpha (1+\beta )t_1^\beta (T-t_1)\left( \frac{\partial t_1}{\partial T}\right) ^2\right. \\&+\,\alpha t_1^{1+\beta }(T-t_1)\frac{\partial ^2 t_1}{\partial T^2}- \alpha t_1^{1+\beta }\left( \frac{\partial t_1}{\partial T}\right) ^2+2\alpha t_1^{1+\beta }\frac{\partial t_1}{\partial T}-\alpha T^{1+\beta }\\&+\frac{\alpha }{2}\left\{ (2+\beta )T^{1+\beta }-t_1^{2+\beta }\frac{\partial ^2 t_1}{\partial T^2}-(2+\beta )t_1^{1+\beta }\frac{\partial ^2 t_1}{\partial T^2} -2t_1 \frac{\partial t_1}{\partial T}-\frac{2T^{1+\beta }}{1+\beta }\frac{\partial ^2 t_1}{\partial T^2}\right. \\&\left. \left. -\,\frac{2t_1T^{1+\beta }}{1+\beta } \left( \frac{\partial t_1}{\partial T}\right) ^2-2t_1T^\beta \frac{\partial t_1}{\partial T}-t_1^2 \beta T^{\beta -1}+\beta t_1^{\beta -1}\left( \frac{\partial t_1}{\partial T}\right) ^2 +t_1^\beta \frac{\partial ^2 t_1}{\partial T^2}\right\} \right] \\&\left. +\,s(1-\delta )\left\{ b\left( 1-\left( \frac{\partial t_1}{\partial T}\right) ^2-t_1 \frac{\partial ^2 t_1}{\partial T^2}\right) -a\frac{\partial ^2 t_1}{\partial T^2}\right\} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervin, M., Roy, S.K. & Weber, GW. Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration. Ann Oper Res 260, 437–460 (2018). https://doi.org/10.1007/s10479-016-2355-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2355-5

Keywords

Mathematics Subject Classification

Navigation