Skip to main content

Advertisement

Log in

Preprocessing for a map sectorization problem by means of mathematical programming

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The sectorization problem is a particular case of partitioning problems occurring in cartography. The aim is to partition a territory into sectors such that the statistical activity measure of each sector is as close as possible to a given target value. We model this as a problem of minimizing the maximum deviation among all the sectors between their activity measure and their target value. We propose a mathematical programming formulation for the problem, we add some valid inequalities to restrict the solution space and develop a preprocessing procedure to reduce the number of variables. Computational results on different maps highlight the strong efficiency of this reduction procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baptiste, P., Della Croce, F., Grosso, A., & T’kindt, V. (2010). Sequencing a single machine with due dates and deadlines: an ILP-based approach to solve very large instances. Journal of Scheduling, 13(1), 39–47.

    Article  Google Scholar 

  • Berman, O., Drezner, Z., Tamir, A., & Wesolowsky, G. O. (2009). Optimal location with equitable loads. Annals of Operations Research, 167, 307–325.

    Article  Google Scholar 

  • Bozkaya, B., Erkut, E., & Laporte, G. (2003). A tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research, 144, 12–26.

    Article  Google Scholar 

  • Bozkaya, B., Erkut, E., Laporte, G., & Neuman, S. (2005). Political districting: solving a multi-objective problem using tabu search. Boston: Kluwer Academic.

    Google Scholar 

  • Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., & Li, M. (1999). Approximation algorithms for directed Steiner problems. Journal of Algorithms, 33, 73–91.

    Article  Google Scholar 

  • Daskin, M. S. (1995). Network and discrete location: models, algorithms and applications. New York: Wiley.

    Book  Google Scholar 

  • Dreyfus, S. E., & Wagner, R. A. (1972). The Steiner problem in graphs. Networks, 1, 195–207.

    Article  Google Scholar 

  • Drezner, Z., & Hamacher, H. W. (2004). Facility location: applications and theory. Berlin: Springer.

    Google Scholar 

  • Eiselt, H. A., & Sandblom, C.-L. (2004). Decision analysis, location models, and scheduling problems. Berlin: Springer.

    Book  Google Scholar 

  • Feremans, C., Labbe, M., & Laporte, G. (2002). A comparative analysis of several formulations for the generalized minimum spanning tree problem. Network, 39(1), 29–34.

    Article  Google Scholar 

  • Garfinkel, R. S., & Nemhauser, G. L. (1970). Optimal political districting by implicit enumeration techniques. Management Science, 13, 495–508.

    Article  Google Scholar 

  • Grilli di Cortona, P., Manzi, C., Pennisi, A., Ricca, F., & Simeone, B. (1999). Evaluation and optimization of electoral systems. SIAM monographs on discrete mathematics and applications. Philadelphia: SIAM.

    Book  Google Scholar 

  • Hansen, P., & Jaumard, B. (1997). Cluster analysis and mathematical programming. Mathematical Programming, 79, 191–215.

    Google Scholar 

  • Hess, S. W., Weaver, J. B., Siegfeldt, J. N., Whelan, J. N., & Zhitlau, P. A. (1965). Nonpartisan political districting by computer. Operations Research, 13, 998–1006.

    Article  Google Scholar 

  • Kalcsics, J., Nickel, S., Puerto, P., & Rodríguez-Chía, A. (2010). The ordered capacitated facility location problem. An Official Journal of the Spanish Society of Statistics and Operations Research, 18, 203–222.

    Google Scholar 

  • Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1), 359–392.

    Article  Google Scholar 

  • Kernighan, B., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2), 291–307.

    Article  Google Scholar 

  • Mehrotra, A. (1992). Constrained graph partitioning: decomposition, polyhedral structure and algorithms. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA

  • Mehrotra, A., Johnson, E. L., & Nemhauser, G. L. (1998). An optimization based heuristic for political districting. Management Science, 44, 1100–1114.

    Article  Google Scholar 

  • Miller, C., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of the travelling salesman problem. Journal of the Association for Computing Machinery, 7, 326–329.

    Article  Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization. New York: Wiley-Interscience.

    Google Scholar 

  • Osorio, M. A., Glover, F., & Hammer, P. (2002). Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions. Annals of Operations Research, 117, 71–93.

    Article  Google Scholar 

  • Ou, C., Ranka, S., & Fox, G. (1996). Fast and parallel mapping algorithms for irregular and adaptive problems. Journal of Supercomputing, 10, 119–140.

    Article  Google Scholar 

  • Patra, A., & Kim, D. (1998). Efficient mesh partitioning for adaptive hp finite element methods. In International conference on domain decomposition methods.

    Google Scholar 

  • Savelsberg, M. W. P. (1994). Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal of Computing, 6, 445–454.

    Article  Google Scholar 

  • Schloegel, k., Karypis, G., & Kumar, V. (2000). Graph partitioning for high performance scientific simulations. In J. Dongarra, I. Foster, G. Fox, K. Kennedy, & A. White (Eds.), CRPC parallel computing handbook. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • T’kindt, V., Della Croce, F., & Bouquard, J.-L. (2007). Enumeration of Pareto optima for a flowshop scheduling problem with two criteria. INFORMS Journal on Computing, 19(1), 64–72.

    Article  Google Scholar 

  • Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1, 146–160.

    Article  Google Scholar 

  • Teitz, M. B., & Bart, P. (1968). Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research, 16, 955–961.

    Article  Google Scholar 

  • van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility location. Operations Research, 34, 145–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Soukhal, A. & T’kindt, V. Preprocessing for a map sectorization problem by means of mathematical programming. Ann Oper Res 222, 551–569 (2014). https://doi.org/10.1007/s10479-013-1447-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1447-8

Keywords

Navigation