Skip to main content
Log in

A data-integrated simulation model to forecast ground-level ozone concentration

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Elevated ground-level ozone is hazardous to people’s health and destructive to the environment. This research develops a novel data-integrated simulation to forecast ground-level ozone (SIMGO) concentration based on a real data set collected from seven monitoring sites in the Dallas-Fort Worth area between January 1, 2005 and December 31, 2007. Tree-based models and kernel density estimation (KDE) were utilized to extract important knowledge from the data for building the simulation. Classification and Regression Trees (CART), data mining tools for prediction and classification, were used to develop two tree structures in order to forecast ground-level ozone based on factors such as solar radiation and outdoor temperature. Kernel density estimation is used to estimate continuous distributions for the ground-level ozone concentration for seven days in advance. One week forecasts obtained from SIMGO for different months of a year is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Breiman, L., Friedman, J. H., Oishen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont: Wadsworth.

    Google Scholar 

  • Epanechnikov, V. A. (1969). Nonparametric estimation of a multivariate probability density. Theory of Probability and Its Applications, 14, 153–158.

    Article  Google Scholar 

  • Davis, J. M., & Speckman, P. (1998). A model for predicting maximum and 8 h average ozone in Houston. Atmospheric Environment, 33(16), 2487–2500.

    Article  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1999). Statistical surface ozone models: an improved methodology to account for non-linear behavior. Atmospheric Environment, 34(1), 21–34.

    Article  Google Scholar 

  • Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401–407.

    Article  Google Scholar 

  • Kumar, A., Vedula, S., & Sud, A. (2000). Development of an ozone forecasting model for non-attainment areas in the state of Ohio. Environmental Monitoring and Assessment, 62(1), 91–111.

    Article  Google Scholar 

  • Lafore, R. (1991). Objected oriented programming in turbo C++. Indianapolis: Sams.

    Google Scholar 

  • Lin, J.-T., Youn, D., Liang, X.-Z., & Wuebbles, D. J. (2008). Global model simulation of summertime US ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions. Atmospheric Environment, 42(36), 8470–8483.

    Article  Google Scholar 

  • McClellan, R. O., Frampton, M. W., Koutrakis, P., McDonnell, W. F., Moolgavkar, S., North, D. W., Sith, A. E., Smith, R. L., & Utell, M. J. (2009). Critical considerations in evaluating scientific evidence of health effects of ambient ozone: a conference report. Inhalation Toxicology, 21(S2), 1–36.

    Article  Google Scholar 

  • North Central Texas Council of Governments (NCTCOG) (2011). Regional ozone information. http://www.nctcog.org/trans/air/ozone/. Accessed 10 January.

  • Sheather, S. J. (2004). Density estimation. Statistical Science, 19(4), 588–597.

    Article  Google Scholar 

  • Sheather, S. J., & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B, 53(3), 683–690.

    Google Scholar 

  • Silverman, B. W. (1978). Choosing window width when estimating a density. Biometrika, 65(1), 1–11.

    Article  Google Scholar 

  • Sundaramoorthi, D., Chen, V. C. P., Rosenberger, J. M., Kim, S. B., & Behan, D. F. (2009). A data-integrated simulation model to evaluate nurse-patient assignments. Health Care Management Science, 12(3), 252–268.

    Article  Google Scholar 

  • Sundaramoorthi, D., Coult, A., & Nguyen, D. (2012, to appear). A data-integrated simulation of financial market dynamics. International Journal of Operations Research and Information Systems, 3(3).

  • Szintai, B., Kaufmann, P., & Rotach, M. (2010). Simulation of pollutant transport in complex terrain with a numerical weather prediction-particle dispersion model combination. Boundary-Layer Meteorology, 137(3), 373–396.

    Article  Google Scholar 

  • Temiyasathit, C., Kim, S. B., & Sule, N. V. (2007). Statistical modeling for the prediction of ozone concentrations in the Dallas-Fort worth area. In Proceeding of the 2007 industrial engineering research conference, Nashville, TN.

  • Thompson, M. L., Reynolds, J., Cox, L. H., Guttorp, P., & Sampson, P. D. (2001). A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmospheric Environment, 35(3), 617–630.

    Article  Google Scholar 

  • Torres-Jardón, R., García-Reynoso, J. A., Jazcilevich, A., & Ruiz-Suárez, L. G. (1995). Assessment of the ozone-nitrogen oxide-volatile organic compound sensitivity of Mexico City through an indicator-based approach: measurements and numerical simulations comparison. Journal of the Air & Waste Management Association, 59(10), 1155–1172.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2011a). OZONE—good high, bad nearby. http://www.epa.gov/glo/pdfs/ozonegb.pdf. Accessed 8 November 2011.

  • U.S. Environmental Protection Agency (EPA) (2011b). Understanding the clean air act. http://www.epa.gov/air/caa/peg/understand.html. Accessed 10 January 2011.

  • Vautard, R., Honore, C., Beekmann, M., & Rouil, L. (2005). Simulation of ozone during the august 2003 heat wave and emission control scenarios. Atmospheric Environment, 39(16), 2957–2967.

    Article  Google Scholar 

  • World Bank Group (WBG) (2011). Pollution prevention and abatement handbook. http://www.ifc.org/ifcext/enviro.nsf/AttachmentsByTitle/p_ppah_pguiGroundLevelOzone/$FILE/HandbookGroundLevelOzone.pdf. Accessed 8 November 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durai Sundaramoorthi.

Appendix

Appendix

  1. 1.

    Ground-level ozone (GO)

  2. 2.

    Previous day’s ground-level ozone (PD_GO)

  3. 3.

    Previous year’s ground-level ozone on the same day (PY_GO)

  4. 4.

    Previous day’s nitric oxide level (PD_NOX)

  5. 5.

    Previous year’s nitric oxide level on the same day (PY_NOX)

  6. 6.

    Previous day’s solar radiation (PD_SR)

  7. 7.

    Previous year’s solar radiation on the same day (PY_SR)

  8. 8.

    Previous day’s outdoor temperature (PD_OT)

  9. 9.

    Previous year’s outdoor temperature on the same day (PY_OT)

  10. 10.

    Previous day’s wind speed (PD_WS)

  11. 11.

    Previous year’s wind speed on the same day (PY_WS)

  12. 12.

    Previous day’s maximum wind gust (PD_MWG)

  13. 13.

    Previous year’s maximum wind gust on the same day (PY_MWG)

  14. 14.

    Previous day’s resultant wind speed (PD_RWS)

  15. 15.

    Previous year’s resultant wind speed on the same day (PY_RWS)

  16. 16.

    Previous day’s resultant wind direction (PD_RWD)

  17. 17.

    Previous year’s resultant wind direction on the same day (PY_RWD)

  18. 18.

    Previous day’s standard deviation of horizontal wind direction (PD_HWD)

  19. 19.

    Previous year’s standard deviation of horizontal wind direction on the same day (PY_HWD)

  20. 20.

    Day of the week (D)

  21. 21.

    Month of the year (M)

  22. 22.

    Data collection location (L)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaramoorthi, D. A data-integrated simulation model to forecast ground-level ozone concentration. Ann Oper Res 216, 53–69 (2014). https://doi.org/10.1007/s10479-012-1163-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1163-9

Keywords

Navigation