Skip to main content
Log in

Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We study nuclear embeddings for function spaces of generalised smoothness defined on a bounded Lipschitz domain Ω ⊂ ℝd. This covers, in particular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces defined on bounded domains as well as some first results for function spaces of logarithmic smoothness. In addition, we provide some new, more general approach to compact embeddings for such function spaces, which also unifies earlier results in different settings, including also the study of their entropy numbers. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) about nuclear diagonal operators acting in r spaces, which we could recently extend to the vector-valued setting needed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Almeida, Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl., 304, (2005), 198–211.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl., vol. 27, Cambridge University Press (Cambridge, 1987).

    Book  MATH  Google Scholar 

  3. M. Bricchi, Tailored function spaces and related h-sets, PhD thesis, Friedrich-Schiller-Universität Jena (2001).

  4. M. Bricchi, Compact embeddings between Besov spaces defined on h-sets, Funct. Approx. Comment. Math., 30, (2002), 7–36.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bricchi and S. D. Moura, Complements on growth envelopes of spaces with generalized smoothness in the sub-critical case, Z. Anal. Anwend., 22, (2003), 383–398.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. M. Caetano and W. Farkas, Local growth envelopes of Besov spaces of generalized smoothness, Z. Anal. Anwend., 25, (2006), 265–298.

    MathSciNet  MATH  Google Scholar 

  7. A. M. Caetano and D. D. Haroske, Continuity envelopes of spaces of generalised smoothness: a limiting case; embeddings and approximation numbers, J. Function Spaces Appl., 3, (2005), 33–71.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Caetano and H. G. Leopold, Local growth envelopes of Triebel–Lizorkin spaces of generalized smoothness, J. Fourier Anal. Appl., 12, (2006), 427–445.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Caetano and H. G. Leopold, On generalized Besov and Triebel–Lizorkin spaces of regular distributions, J. Funct. Anal., 264, (2013), 2676–2703.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Univ. Press (Cambridge, 1990).

    Book  MATH  Google Scholar 

  11. F. Cobos, O. Domínguez, and Th. Kühn, On nuclearity of embeddings between Besov spaces, J. Approx. Theory, 225, (2018), 209–223.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Cobos, D. E. Edmunds, and Th. Kühn, Nuclear embeddings of Besov spaces into Zygmund spaces, J. Fourier Anal. Appl., 26, (2020), Papper No. 9.

  13. F. Cobos and D. L. Fernandez, Hardy–Sobolev spaces and Besov spaces with a function parameter, in: Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., vol. 1302, Springer (Berlin, 1998), pp. 158–170.

    Chapter  Google Scholar 

  14. F. Cobos and Th. Kühn, Approximation and entropy numbers in Besov spaces of generalized smoothness, J. Approx. Theory, 160, (2009), 56–70.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press (Oxford, 1987).

    MATH  Google Scholar 

  16. D. E. Edmunds, P. Gurka, and J. Lang, Nuclearity and non-nuclearity of some Sobolev embeddings on domains, J. Approx. Theory, 211, (2016), 94–103.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. E. Edmunds and J. Lang, Non-nuclearity of a Sobolev embedding on an interval, J. Approx. Theory, 178, (2014), 22–29.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. E. Edmunds and Y. Netrusov, Entropy numbers of operators acting between vector-valued sequence spaces, Math. Nachr., 286, (2013), 614–630.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press (Cambridge, 1996).

    Book  MATH  Google Scholar 

  20. P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math., 130, (1973), 309–317.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Farkas and H.-G. Leopold, Characterisation of function spaces of generalised smoothness, Ann. Mat. Pura Appl., 185, (2006), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Grothendieck, Produits tensoriels topologiques et espaces nuclíeaires, Mem. Amer. Math. Soc., 16, (1955), Ch. 1: 196 pp., Ch. 2: 140 pp.

  23. D. D. Haroske, H.-G. Leopold, and L. Skrzypczak, Nuclear embeddings in general vector-valued sequence spaces with an application to Sobolev embeddings of function spaces on quasi-bounded domains, J. Complexity, 69, (2022), Paper No. 01605, 23 pp.

  24. D. D. Haroske and S. D. Moura, Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers, J. Approx. Theory, 128, (2004), 151–174.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. D. Haroske and S. D. Moura, Continuity envelopes and sharp embeddings in spaces of generalized smoothness, J. Funct. Anal., 254 (2008), 1487–1521.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. D. Haroske and L. Skrzypczak, Nuclear embeddings in weighted function spaces, Integral Equations Operator Theory, 92, (2020), Paper No. 46, 37 pp.

  27. D. D. Haroske and L. Skrzypczak, Nuclear embeddings of Morrey sequence spaces and smoothness Morrey spaces, arXiv:2211.02594 (2022).

  28. D. D. Haroske, L. Skrzypczak, and H. Triebel, Nuclear Fourier transforms, J. Fourier Anal. Appl., 29, (2023), Paper No. 38, 28 pp.

  29. G. A. Kalyabin and P. I. Lizorkin, Spaces of generalized smoothness, Math. Nachr., 133, (1987), 7–32.

    Article  MathSciNet  Google Scholar 

  30. H. König, Eigenvalue Distribution of Compact Operators, Birkhäauser (Basel, 1986).

    Book  MATH  Google Scholar 

  31. Th. Kühn, H.-G. Leopold, W. Sickel, and L. Skrzypczak, Entropy numbers of embeddings of weighted Besov spaces. II, Proc. Edinburgh Math. Soc. (2), 49, (2006), 331–359.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Lamby and S. Nicolay, Some remarks on the Boyd functions related to the admissible sequences, Z. Anal. Anwend., 41, (2022), 211–227.

    Article  MathSciNet  MATH  Google Scholar 

  33. H.-G. Leopold, Embeddings and entropy numbers in Besov spaces of generalized smoothness, in: Function Spaces (Poznaní, 1998), Lecture Notes in Pure Appl. Math., vol. 213, Marcel Dekker (New York, Basel, 2000), pp. 323–336.

    Google Scholar 

  34. H.-G. Leopold, Embeddings for general weighted sequence spaces and entropy numbers, in: V. Mustonen and J. Rákosník, eds., Function Spaces, Differential Operators and Nonlinear Analysis, Proceedings of the Conference held in Syöte, June, 1999, Math. Inst. Acad. Sci. Czech Republic, (2000), pp. 170–186.

  35. H.-G. Leopold, Embeddings and entropy numbers for general weighted sequence spaces: the non-limiting case, Georgian Math. J., 7, (2000), 731–743.

    Article  MathSciNet  MATH  Google Scholar 

  36. H.-G. Leopold and L. Skrzypczak, Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators, part II, J. Math. Anal. Appl., 429, (2015), 439–460.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. I. Lizorkin, Spaces of generalized smoothness, Appendix to Russian edition of [51], Mir (Moscow, 1986), pp. 381–415 (in Russian).

    Google Scholar 

  38. C. Merucci, Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces, in: M. Cwikel and J. Peetre, eds., Interpolation Spaces and Allied Topics in Analysis, Lecture Notes of Math., vol. 1070, Proc. Conf., Lund/Sweden, 1983, Springer (1984), pp. 183–201.

  39. S. D. Moura, Function spaces of generalised smoothness, Dissertationes Math., 398 (2001).

  40. S. D. Moura, Function spaces of generalised smoothness, entropy numbers, applications, PhD thesis, University of Coimbra, Portugal (2001).

    MATH  Google Scholar 

  41. S. D. Moura, On some characterizations of Besov spaces of generalized smoothness, Math. Nachr., 280, (2007), 1190–1199.

    Article  MathSciNet  MATH  Google Scholar 

  42. O. G. Parfenov, Nuclearity of embedding operators from Sobolev classes into weighted spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 247, (1997), 156–165, 301–302 (in Russian); translated in J. Math. Sci. (New York), 101 (2000), 3139–3145.

    Google Scholar 

  43. A. Pietsch, r-Nukleare Sobolevsche Einbettungsoperatoren, in: Elliptische Differentialgleichungen, Band II, Schriftenreihe Inst. Math. Deutsch. Akad. Wissensch, Berlin, Reihe A, No. 8, Akademie-Verlag (Berlin, 1971), pp. 203–215.

    Google Scholar 

  44. A. Pietsch, Operator Ideals, North-Holland Mathematical Library, vol. 20, North-Holland (Amsterdam, 1980).

    MATH  Google Scholar 

  45. A. Pietsch, Grothendieck’s concept of a p-nuclear operator, Integral Equations Operator Theory, 7, (1984), 282–284.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Pietsch, Eigenvalues and s-numbers, Akad. Verlagsgesellschaft Geest & Portig (Leipzig, 1987).

    MATH  Google Scholar 

  47. A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser Boston Inc. (Boston, MA, 2007).

    MATH  Google Scholar 

  48. A. Pietsch and H. Triebel, Interpolationstheorie für Banachideale von beschränkten linearen Operatoren, Studia Math., 31 (1968), 95–109.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. S. Rychkov, On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc., 60, (1999), 237–257.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Tong, Diagonal nuclear operators on p spaces, Trans. Amer. Math. Soc., 143, (1969), 235–247.

    MathSciNet  MATH  Google Scholar 

  51. H. Triebel, Theory of Function Spaces, Birkhüauser (Basel, 1983); Reprint (Modern Birkhäuser Classics) (2010).

    Book  MATH  Google Scholar 

  52. H. Triebel, Theory of Function Spaces. III, Birkhäuser (Basel, 2006).

    MATH  Google Scholar 

  53. H. Triebel, Function Spaces and Wavelets on Domains, European Mathematical Society Publishing House (Zürich, 2008).

    Book  MATH  Google Scholar 

  54. H. Triebel, Nuclear embeddings in function spaces, Math. Nachr., 290, (2017), 3038–3048.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Haroske.

Additional information

Dedicated to Oleg V. Besov on the occasion of his 90th birthday

Both authors were partially supported by the German Research Foundation (DFG), Grant no. Ha 2794/8-1.

The author was partially supported by the Center for Mathematics of the University of Coimbra-UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroske, D.D., Leopold, HG., Moura, S.D. et al. Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness. Anal Math 49, 1007–1039 (2023). https://doi.org/10.1007/s10476-023-0238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-023-0238-y

Key words and phrases

Mathematics Subject Classification

Navigation