Skip to main content
Log in

On the Edrei–Goldberg–Ostrovskii Theorem for Minimal Surfaces

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

This paper is devoted to the development of Beckenbach’s theory of the meromorphic minimal surfaces. We consider the relationship between the number of separated maximum points of a meromorphic minimal surface and the Baernstein’s T*-function. The results of Edrei, Goldberg, Heins, Ostrovskii, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baernstein II, Integral means, univalent functions and circular simmetrization, Acta Math., 133, (1974) 139–169.

    Article  MathSciNet  Google Scholar 

  2. E. F. Beckenbach, Defect relations for meromorphic minimal surfaces, in: Topics in Analysis, Lecture Notes in Math., vol. 419, Springer-Verlag (Berlin–New York, 1974), pp. 18–41.

    Chapter  Google Scholar 

  3. E. F. Beckenbach and G. A. Hutchison, Meromorphic minimal surfaces, Pacific J. Math., 28 (1969), 17–47.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. F. Beckenbach and T. Cootz, The second fundamental theorem for meromorphic minimal surfaces, Bull. Amer. Math. Soc., 76 (1970), 711–716.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. F. Beckenbach, F. H. Eng and R. E. Tafel, Global properties of rational and logarithmico-rational minimal surfaces, Pacific J. Math., 50 (1974), 355–381.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Blashke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, Springer (Berlin, Heidelberg, 1923).

    Book  Google Scholar 

  7. E. Ciechanowicz and I. I. Marchenko, Maximum modulus points, deviations and spreads of meromorphic functions, in: Value Distribution Theory and Related Topics, edited by G. A. Barsegian, I. Laine and C. C. Yang, Kluwer Academic Publishers (Dordrecht, 2004), pp. 117–129.

    Chapter  MATH  Google Scholar 

  8. R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Springer (New York, 1950).

    MATH  Google Scholar 

  9. A. Edrei, The deficiencies of meromorphic functions of finite lower order, Duke Math. J., 31 (1964), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Essen and D. F. Shea, Applications of Denjoy integral inequalities and differential inequalities to growth problems for subharmonic and meromorphic functions, Proc. Roy. Irish Acad. Sect. A, 82 (1982), 201–216.

    MathSciNet  MATH  Google Scholar 

  11. H. Fujimoto, Value Distribution Theory of the Gauss Map of Minimal Surfaces, Aspects Math., E21, Friedr. Vieweg & Sohn (Braunschweig, 1993).

    Book  MATH  Google Scholar 

  12. R. Gariepy and J. L. Lewis, Space analogues of some theorems for subharmonic and meromorphic functions, Ark. Mat., 13 (1975), 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Nauka (Moscow, 1970) (in Russian); translation in

    Google Scholar 

  14. W. K. Hayman, Multivalent Functions, Cambridge Univ. Press (Cambridge, 1958).

    MATH  Google Scholar 

  15. M. Heins, Entire functions with bounded minimum modulus; subharmonic functions analogues, Ann. of Math., 49 (1948), 200–219.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Kowalski and I. I. Marchenko, On the maximum modulus points and deviations of meromorphic minimal surfaces, Mat. Stud., 46 (2016), 137–151.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Kowalski and I. I. Marchenko, On deviations and spreads of meromorphic minimal surfaces, Osaka J. Math., 57 (2020), 85–101.

    MathSciNet  MATH  Google Scholar 

  18. I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter (Berlin, New York, 1993).

    Book  MATH  Google Scholar 

  19. I. I. Marchenko, The growth of meromorphic minimal surfaces, Teor. Funkts., Funkts. Anal., Prilozh., 34 (1979), 95–98 (Russian).

    MathSciNet  Google Scholar 

  20. I. I. Marchenko, The magnitudes of deviations and spreads of meromorphic functions of fnite lower order, Mat. Sb., 186 (1995), 85–102 (in Russian); translated in Sb. Math., 186 (1995), 391–408.

    Google Scholar 

  21. I. I. Marchenko, Baernstein’s star-function, maximum modulus points and a problem of Erdős, Ann. Fenn. Math., 47 (2022), 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. I. Marchenko and A. I. Shcherba, On the magnitudes of deviations of meromorphic functions, Mat. Sb., 181 (1990), 3–24 (in Russian); translated in Math. USSR-Sb., 69 (1991), 1–24.

    MATH  Google Scholar 

  23. A. I. Markushevich, Theory of Functions of a Complex Variable, Prentice-Hall (Englewood Cliffs, NJ, 1965).

    MATH  Google Scholar 

  24. I. V Ostrovskii, On defects of meromorphic function of lower order less than one, Dokl. Akad. Nauk SSSR, 150 (1963), 32–35 (in Russian).

    MathSciNet  Google Scholar 

  25. V. P. Petrenko, Growth of meromorphic functions of finite lower order, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 414–454 (in Russian); translated in Math. USSR-Izv., 33 (1969), 391–432.

    MathSciNet  Google Scholar 

  26. V. P. Petrenko, Growth of Meromorphic Functions, Vyshcha Shkola (Kharkov, 1978) (in Russian).

    MATH  Google Scholar 

  27. V. P. Petrenko, Growth and distribution of values of minimal surfaces, Dokl. Akad. Nauk SSSR, 256 (1981), 40–43 (in Russian).

    MathSciNet  Google Scholar 

  28. G. Rhoads and A. Weitsman, The logarithmic derivative for minimal surfaces in ℝ3, Comput. Methods Funct. Theory, 4 (2004), 59–75.

    Article  MathSciNet  Google Scholar 

  29. R. E. Tafel, Further results in the theory of meromorphic minimal surfaces, PhD Thesis, University of California (Los Angeles, 1970).

    Google Scholar 

  30. O. Teichmüller, Vermutungen und Sätze über die Wertverteilung gebrochener Funktionen endlicher Ordnung, Deutsche Math., 4 (1939), 163–190.

    MathSciNet  MATH  Google Scholar 

  31. A. Wiman, Sur une extension d’une théorème de M. Hadamard, Ark. Mat., 2, (1903), 5 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kowalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalski, A., Marchenko, I.I. On the Edrei–Goldberg–Ostrovskii Theorem for Minimal Surfaces. Anal Math 49, 807–823 (2023). https://doi.org/10.1007/s10476-023-0230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-023-0230-6

Key words and phrases

Mathematics Subject Classification

Navigation