Skip to main content
Log in

Walsh-Lebesgue points of multi-dimensional functions

О точках Уолща-Лебега функций нескольких переменных

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Walsh-Lebesgue points are introduced for higher dimensions and it is proved that a.e. point is a Walsh-Lebesgue point of a function f from the Hardy space H i1 [0, 1)d, where

$$ H_1^i [0,1]^d \supset L(\log L)^{d - 1} [0,1)^d for all i = 1,...,d $$

. Every function fH i1 [0, 1)d is Fejér summable at each Walsh-Lebesgue point. Similar theorem is verified for ϑ-summability.

Резюме

В работе вводится понятие точек Уолща-Лебега для функций нескольких переменных. Доказано, что почти каждая точка является точкой Уолща-Лебега для функции из пространства Харди H i1 [0, 1)d, где

Всякая функция f из класса H i1 [0, 1)d суммируема по Фейеру в любой точке Уолща-Лебега. Аналогичный результат установлен для θ-суммируемости.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Butzer and R. J. Nessel, Fourier analysis and approximation, Birkhäuser (Basel, 1971).

    MATH  Google Scholar 

  2. P. L. Butzer and H. J. Wagner, Walsh series and the concept of a derivative, Applic, Anal., 3(1973), 29–46.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc., 77(1971), 744–745.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Fefferman, On the divergence of multiple Fourier series, Bull. Amer. Math. Soc., 77(1971), 191–195.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. G, Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Camb. Phil. Soc., 140(2006), 509–536.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Fejér, Untersuchungen über Fouriersche Reihen, Math. Ann., 58(1904), 51–69.

    Article  MATH  Google Scholar 

  7. N. J, Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41(1955), 558–591.

    Article  MathSciNet  Google Scholar 

  8. G. Gát, On the divergence of the (C, 1) means of double Walsh-Fourier series, Proc. Amer. Math. Soc., 128(2000), 1711–1720.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Gát, Divergence of the (C, 1) means of d-dimensional Walsh-Fourier series, Analysis Math., 27(2001), 157–171.

    Article  MATH  Google Scholar 

  10. H. Lebesgue, Recherches sur la convergence des séries de Fourier, Math. Ann., 61(1905), 251–280.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math., 32(1939), 122–132.

    Google Scholar 

  12. F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18(1975), 189–195.

    MathSciNet  Google Scholar 

  13. F. Schipp and J. Bokor, L system approximation algorithms generated by ϕ summations, Automatica, 33(1997), 2019–2024.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Schipp, W. R, Wade, P. Simon, and J. Pál, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger (Bristol-New York, 1990).

    MATH  Google Scholar 

  15. P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 27(1985), 87–101.

    Google Scholar 

  16. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press (Princeton, N.J., 1971).

    MATH  Google Scholar 

  17. L. Szili, On the summability of trigonometric interpolation processes, Acta Math. Hungar., 91(2001), 131–158.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Szili and P. Vértesi, On uniform convergence of sequences of certain linear operators, Acta Math. Hungar., 91(2001), 159–186.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. M. Trigub and E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer (Dordrecht-Boston-London, 2004).

    MATH  Google Scholar 

  20. F. Weisz, Convergence of singular integrals, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 32(1989), 243–256.

    MATH  MathSciNet  Google Scholar 

  21. F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer (Berlin, 1994).

    MATH  Google Scholar 

  22. F. Weisz, Cesàro summability of two-parameter Walsh-Fourier series, J. Approx. Theory, 88(1997), 168–192.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Weisz, (C,α) means of several-parameter Walsh-and trigonometric Fourier series, East J. Approx., 6(2006), 129–156.

    MathSciNet  Google Scholar 

  24. F. Weisz, Summability of Multi-dimensional Fourier series and Hardy spaces, Kluwer (Dordrecht-Boston-London, 2002).

    Google Scholar 

  25. F. Weisz, θ-summability of Fourier series, Acta Math. Hungar., 103(2004), 139–176.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Zygmund, Trigonometric series, Cambridge University Press (U.K., 1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Weisz.

Additional information

This research was supported by the Hungarian Scientific Research Funds (OTKA) under Grant K 67 642.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisz, F. Walsh-Lebesgue points of multi-dimensional functions. Anal Math 34, 307–324 (2008). https://doi.org/10.1007/s10476-008-0404-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-008-0404-2

Keywords

Navigation