Skip to main content
Log in

Number theoretic applications of a class of Cantor series fractal functions. I

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Suppose that \({{(P, Q) \in {\mathbb{N}_{2}^\mathbb{N}} \times {\mathbb{N}_{2}^\mathbb{N}}}}\) and x = E 0.E 1 E 2 · · · is the P-Cantor series expansion of \({x \in \mathbb{R}}\). We define

$$\psi_{P,Q}(x) := {\sum_{n=1}^{\infty}} \frac{{\rm min}(E_n, q_{n}-1)}{q_1 \cdots q_n}.$$

The functions \({\psi_{P,Q}}\) are used to construct many pathological examples of normal numbers. These constructions are used to give the complete containment relation between the sets of Q-normal, Q-ratio normal, and Q-distribution normal numbers and their pairwise intersections for fully divergent Q that are infinite in limit. We analyze the Hölder continuity of \({\psi_{P,Q}}\) restricted to some judiciously chosen fractals. This allows us to compute the Hausdorff dimension of some sets of numbers defined through restrictions on their Cantor series expansions. In particular, the main theorem of a paper by Y. Wang et al. [29] is improved.

Properties of the functions \({\psi_{P,Q}}\) are also analyzed. Multifractal analysis is given for a large class of these functions and continuity is fully characterized. We also study the behavior of \({\psi_{P,Q}}\) on both rational and irrational points, monotonicity, and bounded variation. For different classes of ergodic shift invariant Borel probability measures \({\mu_1}\) and \({\mu_2}\) on \({{\mathbb{N}_2^\mathbb{N}}}\), we study which of these properties \({\psi_{P,Q}}\) satisfies for \({\mu_1 \times \mu_2}\)-almost every (P,Q) \({{\in {\mathbb{N}_{2}^{\mathbb{N}}} \times {\mathbb{N}_{2}^{\mathbb{N}}}}}\). Related classes of random fractals are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Allaart and K. Kawamura The Takagi function: a survey, Real Anal. Exchange, 37 (2011/12), 1–54.

  2. Altomare C., Mance B.: Cantor series constructions contrasting two notions of normality. Monatsh. Math., 164, 1–22 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becher V., Figueira S.: An example of a computable absolutely normal number. Theoret. Comput. Sci., 270, 947–958 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cantor G.: Über die einfachen Zahlensysteme. Zeitschrift für Math. und Physik, 14, 121–128 (1869)

    MATH  Google Scholar 

  5. Cesari L.: Variation, multiplicity, and semicontinuity. Amer. Math. Monthly, 65, 317–332 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dushistova A. A., Moshchevitin N. G.: On the derivative of the Minkowski ?(x) function. J. Math. Sci., 182, 463–471 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Erdős and A. Rényi, On Cantor’s series with convergent \({\sum1/qn}\), Annales Universitatis L. Eötvös de Budapest, Sect. Math. (1959), 93–109.

  8. Erdős P., Rényi A.: Some further statistical properties of the digits in Cantor’s series. Acta Math. Acad. Sci. Hungar., 10, 21–29 (1959)

    Article  MathSciNet  Google Scholar 

  9. Feng D., Wen Z., Wu J.: Some dimensional results for homogeneous Moran sets. Sci. China Ser. A, 40, 475–482 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Galambos, Representations of Real Numbers by Infinite Series, volume 502 of Lecture Notes in Math., Springer-Verlag (Berlin, Hiedelberg, New York, 1976).

  11. Hančl J., Tijdeman R.: On the irrationality of Cantor series. J. reine angew Math., 571, 145–158 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Hardy G. H.: Weierstrass’s nondifferentiable function. Trans. Amer. Math. Soc., 17, 301–325 (1916)

    MATH  MathSciNet  Google Scholar 

  13. Korobov N.: Concerning some questions of uniform distribution. Izv. Akad. Nauk SSSR Ser. Mat., 14, 215–238 (1950)

    MATH  MathSciNet  Google Scholar 

  14. B. Li and B. Mance, Number theoretic applications of a class of Cantor series fractal functions part II, to appear in Int. J. Number Theory (2015).

  15. B. Mance, On the Hausdorff dimension of countable intersections of certain sets of normal numbers, to appear in J. Théor. Nombres Bordeaux.

  16. Mance B.: Construction of normal numbers with respect to the Q-cantor series expansion for certain Q. Acta Arith., 148, 135–152 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mance B.: of normal numbers with respect to the Cantor series expansion. New York J. Math., 17, 601–617 (2011)

    MATH  MathSciNet  Google Scholar 

  18. L. Rempe-Gillen and M. Urbański, Non-autonomous conformal iterated function systems and Moran-set constructions, arXiv:1210.7469.

  19. Rényi A.: On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hungar., 6, 329–332 (1955)

    Article  Google Scholar 

  20. Rényi A.: On the distribution of the digits in Cantor’s series. Mat. Lapok, 7, 77–100 (1956)

    MATH  MathSciNet  Google Scholar 

  21. Rényi A.: Probabilistic methods in number theory. Shuxue Jinzhan, 4, 465–510 (1958)

    Google Scholar 

  22. Schweiger F.: Über den Satz von Borel–Rényi in der Theorie der Cantorschen Reihen. Monatsh. Math., 74, 150–153 (1969)

    Article  MathSciNet  Google Scholar 

  23. M. W. Sierpiński, Démonstration élémentaire du théorém de M. Borel sur les nombres absolument normaux et détermination effective d’un tel nombre, Bull. Soc. Math. France, 45(1917), 125–153

  24. Tijdeman R., Yuan P.: On the rationality of Cantor and Ahmes series. Indag. Math., 13, 407–418 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. S̆alát T.: Über die Cantorschen Reihen. Czech. Math. J., 18, 25–56 (1968)

    Google Scholar 

  26. S̆alát T.: Zu einigen Fragen der Gleichverteilung (mod 1). Czech. Math. J., 18, 476–488 (1968)

    Google Scholar 

  27. Hong-yong Wang and Zong-ben Xu, A class of rough surfaces and their fractal dimensions, J. Math. Anal. Appl., 259 (2001), 537–553.

  28. Hong-yong Wang and Zong-ben Xu, Construction and dimension analysis for a class of fractal functions, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 431–440.

  29. Yi Wang, Zhixiong Wen, and Lifeng Xi, Some fractals associated with Cantor expansions, J. Math. Anal. Appl., 354 (2009), 445–450.

  30. Wegmann H.: Die Hausdorffsche Dimension von Mengen reeller Zahlen, die durch Zifferneigenschaften einer Cantorentwicklung charakterisiert sind. Czechoslovak Math. J., 18, 622–632 (1968)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mance.

Additional information

Research of the author is partially supported by the U.S. NSF grant DMS-0943870. Additionally, the author would like to thank Pieter Allaart, Michael Cotton, and Mariusz Urbanski for many helpful discussions. The author is indebted to the referee for many valuable suggestions that have improved this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mance, B. Number theoretic applications of a class of Cantor series fractal functions. I. Acta Math. Hungar. 144, 449–493 (2014). https://doi.org/10.1007/s10474-014-0456-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-014-0456-7

Keywords and phrases

Mathematics Subject Classification

Navigation