Skip to main content
Log in

On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Given a finite family \(\mathcal{F}\) of linear forms with integer coefficients, and a compact abelian group G, an \(\mathcal{F}\)-free set in G is a measurable set which does not contain solutions to any equation L(x)=0 for L in \(\mathcal{F}\). We denote by \(d_{\mathcal{F}}(G)\) the supremum of μ(A) over \(\mathcal{F}\)-free sets AG, where μ is the normalized Haar measure on G. Our main result is that, for any such collection \(\mathcal{F}\) of forms in at least three variables, the sequence \(d_{\mathcal{F}}({\mathbb {Z}}_{p})\) converges to \(d_{\mathcal{F}}({\mathbb {R}}/{\mathbb {Z}})\) as p→∞ over primes. This answers an analogue for ℤ p of a question that Ruzsa raised about sets of integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Croot, The minimal number of three-term arithmetic progressions modulo a prime converges to a limit, Canad. Math. Bull., 51 (2008), 47–56.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. T. Gowers and J. Wolf, The true complexity of a system of linear equations, Proc. Lond. Math. Soc. (3), 100 (2010), 155–176.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley (1989).

    MATH  Google Scholar 

  4. B. J. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal., 15 (2005), 340–376.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Green and T. Tao, Linear equations in primes, Annals of Math., 171 (2010), 1753–1850.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Král’, O. Serra and L. Vena, A combinatorial proof of the removal lemma for groups, J. Combin. Theory Ser. A, 116 (2009), 971–978.

    Article  MathSciNet  Google Scholar 

  7. W. Rudin, Fourier Analysis on Groups, Interscience Publishers (1962).

    MATH  Google Scholar 

  8. I. Z. Ruzsa, Solving a linear equation in a set of integers, I, Acta Arith., 65 (1993), 259–282.

    MATH  MathSciNet  Google Scholar 

  9. I. Z. Ruzsa, Solving a linear equation in a set of integers, II, Acta Arith., 72 (1995), 385–397.

    MATH  MathSciNet  Google Scholar 

  10. O. Sisask, Combinatorial properties of large subsets of abelian groups, Ph.D. Thesis, University of Bristol (2009).

  11. T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog, American Mathematical Society (2008).

    MATH  Google Scholar 

  12. T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press (2006).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Candela.

Additional information

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, P., Sisask, O. On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime. Acta Math Hung 132, 223–243 (2011). https://doi.org/10.1007/s10474-011-0124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-011-0124-0

Keywords

2000 Mathematics Subject Classification

Navigation