Skip to main content
Log in

On football manifolds of E. Molnár

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A closed 3-manifold M is said to be hyperelliptic if it has an involution τ such that the quotient space of M by the action of τ is homeomorphic to the standard 3-sphere. We show that the hyperbolic football manifolds of Emil Molnár [12] are hyperelliptic. Then we determine the isometry groups of such manifolds. Another consequence is that the unique hyperbolic dodecahedral and icosahedral 3-space forms with first homology group ℤ35 (constructed by I. Prok in [16], on the basis of a principal algorithm due to Emil Molnár [13], and by Richardson and Rubinstein in [18]) are also hyperelliptic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of \( \mathbb{S}^3 \), Trans. Amer. Math. Soc., 213 (1975), 315–352.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bracho and L. Montejano, The combinatorics of colored triangulations of manifolds, Geom. Dedicata, 22 (1987), 303–328.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Cavicchioli, Neuwirth manifolds and colourings of graphs, Aequationes Math., 44 (1992), 168–187.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Cavicchioli, Manifold Crystallization, Encyclopaedia of Math. (M. Hazewinkel, editor-in-chief; R. Hoksbergen, coordinating editor), Kluwer Academic Publ. (Dordrecht, The Netherlands, 1998).

    Google Scholar 

  5. A. Cavicchioli, D. Repovš and A. B. Skopenkov, Open problems on graphs arising from geometric topology, Topology and its Appl., 84 (1998), 207–226.

    Article  MATH  Google Scholar 

  6. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer Verlag (Berlin-New York, 1980).

    Google Scholar 

  7. M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of PL-manifolds. A survey on cristallizations, Aequationes Math., 31 (1986), 121–141.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. T. Fomenko and S. V. Matveev, Algorithmic and Computer Methods for Three-Manifolds, Math. and Its Appl. 425, Kluwer Acad. Publ. (Dordrecht-Boston-London, 1997).

    MATH  Google Scholar 

  9. F. Grunewald and U. Hirsch, Link complements arising from arithmetic group actions, Int. J. Math., 6 (1995), 337–370.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. D. Mednykh, Three-dimensional hyperelliptic manifolds, Ann. Global Anal. Geom., 8 (1990), 13–19.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. D. Mednykh and M. Reni, Twofold unbranched coverings of genus two 3-manifolds are hyperelliptic, Israel J. Math., 123 (2001), 149–155.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Molnár, Two hyperbolic football manifolds, in: Diff. Geom. and Appl., Proceed. of the Conf. Dubrovnik, Yugoslavia (June 26–July 3, 1988), pp. 217–241.

  13. E. Molnár, Polyhedron complexes with simply transitive group actions and their realizations, Acta Math. Hungar., 59 (1992), 175–216.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Pezzana, Sulla struttura topologica delle varietà compatte, Atti Sem. Mat. Fis. Univ. Modena, 23 (1974), 269–277.

    Google Scholar 

  15. M. Pezzana, Diagrammi di Heegaard e triangolazione contratta, Boll. Un. Mat. Ital., 12 (1975), 98–105.

    MathSciNet  Google Scholar 

  16. I. Prok, Classification of dodecahedral space forms, Beiträge Algebra und Geometrie (Contr. Alg. Geom.), 39 (1998), 497–515.

    MATH  MathSciNet  Google Scholar 

  17. M. Reni, The isometry groups of genus 2 hyperbolic 3-manifolds, Kobe J. Math., 15 (1998), 77–84.

    MATH  MathSciNet  Google Scholar 

  18. J. Richardson and J. H. Rubinstein, Hyperbolic manifolds from a regular polyhedron, preprint (1982).

  19. D. Rolfsen, Knots and Links, Math. Lect. Ser., no. 7, Publish or Perish (Berkeley, California, 1976).

    MATH  Google Scholar 

  20. J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc., 35 (1933), 88–111.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Takahashi, Two knots with the same 2-fold branched covering space, Yokohama Math. J., 25 (1977), 91–99.

    MATH  MathSciNet  Google Scholar 

  22. W. Thurston, Three-dimensional Geometry and Topology, Vol. 1, Edited by Silvio Levy. Princeton Math. Ser. 35, Princeton University Press (Princeton, N.J., 1997).

    Google Scholar 

  23. A. Vince, n-graphs, Discrete Math., 72 (1988), 367–380.

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Ja. Viro and V. L. Kobel’skiĭ, The Volodin-Kuznetsov-Fomenko conjecture on Heegaard diagrams is false, Uspekhi Mat. Nauk, 32 (1977), 175–176.

    MATH  Google Scholar 

  25. J. R. Weeks, SnapPea: A computer program for creating and studying hyperbolic 3-manifolds, available from geom.umn.edu/pub/software/snappea/.

  26. J. A. Wolf, Spaces of Constant Curvature, Univ. California (Berkeley, California, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cavicchioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavicchioli, A., Telloni, A.I. On football manifolds of E. Molnár. Acta Math Hung 124, 321–332 (2009). https://doi.org/10.1007/s10474-009-8196-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-009-8196-9

Key words and phrases

2000 Mathematics Subject Classification

Navigation