Skip to main content
Log in

The limit cycle bifurcations of a whirling pendulum with piecewise smooth perturbations

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper deals with the problem of limit cycles for the whirling pendulum equation = y, ẏ = sin x(cos xr) under piecewise smooth perturbations of polynomials of cos x, sin x and y of degree n with the switching line x = 0. The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations, which the generating functions of the associated first order Melnikov functions satisfy. Furthermore, the exact bound of a special case is given using the Chebyshev system. At the end, some numerical simulations are given to illustrate the existence of limit cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker G L, Blackbuen J A. The Pendulum: A Case Study in Physics. New York: Oxford University Press, 2005

    Book  Google Scholar 

  2. Belley J, Drissi K S. Almost periodic solutions to Josephson’s equation. Nonlinearity, 2003, 16: 35–47

    Article  ADS  MathSciNet  Google Scholar 

  3. Christopher C, Li C. Limit Cycles of Differential Equations. Berlin: Birkhäuser Verlag, 2007

    Google Scholar 

  4. Gasull A, Geyer A, Mañosas F. On the number of limit cycles for perturbed pendulum equations. J Differential Equations, 2016, 261: 2141–2167

    Article  ADS  MathSciNet  Google Scholar 

  5. Gasull A, Li C, Torregrosa J. A new Chebyshev family with applications to Abel equations. J Differential Equations, 2012, 252: 1635–1641

    Article  ADS  MathSciNet  Google Scholar 

  6. Hilbert D. Mathematical problems. Bull Amer Math Soc, 1902, 8: 437–479

    Article  MathSciNet  Google Scholar 

  7. Han M. Asymptotic expansions of Melnikov functions and limit cycle bifurcations. Internat J Bifur Chaos Appl Sci Engrg, 2012, 22(12): 1250296

    Article  MathSciNet  Google Scholar 

  8. Han M, Li J. Lower bounds for the Hilbert number of polynomial systems. J Differential Equations, 2012, 252: 3278–3304

    Article  ADS  MathSciNet  Google Scholar 

  9. Han M, Sheng L. Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J Appl Anal Comput, 2015, 5: 809–815

    MathSciNet  Google Scholar 

  10. Inoue K. Perturbed motion of a simple pendulum. J Physical Society of Japan, 1988, 57: 1226–1237

    Article  ADS  MathSciNet  Google Scholar 

  11. Ilyashenko Y. Centennial history of Hilbert’s 16th problem. Bulletin of the American Mathematical Society, 2022, 39(3): 301–354

    Article  MathSciNet  Google Scholar 

  12. Jing Z, Cao H. Bifurcations of periodic orbits in a Josephson equation with a phase shift. International Journal of Bifurcation and Chaos, 2002, 12: 1515–1530

    Article  ADS  MathSciNet  Google Scholar 

  13. Jing Z. Chaotic behavior in the Josephson equations with periodic force. SIAM J Appl Math, 1989, 49: 1749–1758

    Article  MathSciNet  Google Scholar 

  14. Karlin S, Studden W. Tchebycheff Systems: With Applications in Analysis and Statistic. New York: Interscience Publishers, 1966

    Google Scholar 

  15. Kauderer H. Nichtlineare Mechanik. Berlin: Springer Verlag, 1958

    Book  Google Scholar 

  16. Li C, Zhang Z. A criterion for determining the monotonicity of the ratio of two abelian integrals. J Differential Equations, 1996, 124: 407–424

    Article  ADS  MathSciNet  Google Scholar 

  17. Liang F, Han M. Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fractals, 2012, 45: 454–464

    Article  ADS  MathSciNet  Google Scholar 

  18. Liang F, Han M, Romanovski V. Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop. Nonlinear Anal, 2012, 75: 4355–4374

    Article  MathSciNet  Google Scholar 

  19. Lichardová H. Limit cycles in the equation of whirling pendulum with autonomous perturbation. Appl Math, 1999, 44: 271–288

    Article  MathSciNet  Google Scholar 

  20. Lichardová H. The period of a whirling pendulum. Mathematica Bohemica, 2001, 3: 593–606

    Article  MathSciNet  Google Scholar 

  21. Liu X, Han M. Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Internat J Bifur Chaos Appl Sci Engrg, 2010, 20: 1379–1390

    Article  MathSciNet  Google Scholar 

  22. Llibre J, Ramírez R, Ramírez V, Sadovskaia N. The 16th Hilbert problem restricted to circular algebraic limit cycles. J Differ Equ, 2016, 260: 5726–5760

    Article  ADS  MathSciNet  Google Scholar 

  23. Mitrinović D S. Analytic Inequalities. New York: Springer-Verlag, 1970

    Book  Google Scholar 

  24. Mardešić P. Chebyshev Systems and the Versal Unfolding of the Cusp of Order n. Paris: Hermann, 1998

    Google Scholar 

  25. Minorski N. Nonlinear Oscillations. New York: Van Nostrand, 1962

    Google Scholar 

  26. Mawhin J. Global results for the forced pendulum equation//Canada A, Drabek P, Fonda A. Handbook of Differential Equations. Amsterdam: Elsevier, 2004: 533–589

    Google Scholar 

  27. Morozov A D. Limit cycles and chaos in equations of the pendulum type. PMM USSR, 1989, 53: 565–572

    MathSciNet  Google Scholar 

  28. Pontryagin L. On dynamical systems close to hamiltonian ones. Zh Exp Theor Phys, 1934, 4: 234–238

    Google Scholar 

  29. Sanders J A, Cushman R. Limit cycles in the Josephson equation. SIAM J Math Anal, 1986, 17: 495–511

    Article  MathSciNet  Google Scholar 

  30. Smale S. Mathematical problems for the next century. Math Intell, 1998, 20: 7–15

    Article  MathSciNet  Google Scholar 

  31. Teixeira M. Perturbation Theory for Non-Smooth Systems. New York: Springer-Verlag, 2009

    Google Scholar 

  32. Wang N, Wang J, Xiao D. The exact bounds on the number of zeros of complete hyperelliptic integrals of the first kind. J Differential Equations, 2013, 254: 323–341

    Article  ADS  MathSciNet  Google Scholar 

  33. Wei L, Zhang X. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36(5): 2803–2825

    Article  MathSciNet  Google Scholar 

  34. Xiong Y, Han M. Limit cycle bifurcations in a class of perturbed piecewise smooth systems. Applied Mathematics and Computation, 2014, 242: 47–64

    Article  MathSciNet  Google Scholar 

  35. Xiong Y, Han M, Romanovski V G. The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles. Internat J Bifur Chaos, 2017, 27(8): 1750126

    Article  MathSciNet  Google Scholar 

  36. Yang J. On the number of limit cycles of a pendulum-like equation with two switching lines. Chaos, Solitons and Fractals, 2021, 150: 111092

    Article  MathSciNet  Google Scholar 

  37. Yang J, Zhang E. On the number of limit cycles for a class of piecewise smooth Hamiltonian systems with discontinuous perturbations. Nonlinear Analysis: Real World Applications, 2020, 52: 103046

    MathSciNet  Google Scholar 

  38. Yang J, Zhao L. Bifurcation of limit cycles of a piecewise smooth Hamiltonian system. Qualitative Theory of Dynamical Systems, 2022, 21: Art 142

  39. Zhao Y, Zhang Z. Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. J Differential Equations, 1999, 155: 73–88

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Yang.

Ethics declarations

Conflict of Interest The author declares no conflict of interest.

Additional information

This research was supported by the Natural Science Foundation of Ningxia (2022AAC05044) and the National Natural Science Foundation of China (12161069).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J. The limit cycle bifurcations of a whirling pendulum with piecewise smooth perturbations. Acta Math Sci 44, 1115–1144 (2024). https://doi.org/10.1007/s10473-024-0319-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0319-4

Key words

2020 MR Subject Classification

Navigation