Skip to main content
Log in

Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source

$$\left\{ {\matrix{{{u_t} = \nabla \cdot (|\nabla u{|^{p - 2}}\nabla u) - \chi \nabla \cdot (u\nabla v) + \xi \nabla \cdot (u\nabla w) + f(u),} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {{v_t} = \Delta v - \beta v + \alpha {u^{{k_1}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {0 = \Delta w - \delta w + \gamma {u^{{k_2}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {u(x,0) = {u_0}(x),\,\,\,v(x,0) = {v_0}(x),\,\,\,w(x,0) = {w_0}(x),} \hfill & {x \in \Omega .} \hfill \cr } } \right.$$

The system here is under a homogenous Neumann boundary condition in a bounded domain Ω ⊂ ℝn(n ≥ 2), with χ, ξ, α, β, γ, δ, k1, k2 > 0, p ≥ 2. In addition, the function f is smooth and satisfies that f(s) ≤ κ − μsl for all s ≥ 0, with κ ∈ ℝ, μ > 0, l > 1. It is shown that (i) if \(l>\max\{2k_{1},{2k_{1}n\over{2+n}}+{1\over{p-1}}\}\), then system possesses a global bounded weak solution and (ii) if \(k_{2}>\max\{2k_{1}-1,{2k_{1}n\over{2+n}}+{2-p\over{p-1}}\}\) with l > 2, then system possesses a global bounded weak solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biler P. Existence and nonexistence of solutions for a model of gravitational interaction of particles. Colloq Mathematicum, 1994, 66: 319–334

    Article  MathSciNet  Google Scholar 

  2. Cao X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin Dyn Syst, 2015, 35: 1891–1904

    Article  MathSciNet  Google Scholar 

  3. Gajewski H, Zacharias K. Global behavior of a reaction-diffusion system modelling chemotaxis. Math Nachr, 1998, 195: 77–114

    Article  MathSciNet  Google Scholar 

  4. Jia Z. Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production. Discrete Contin Dyn Syst Ser B, 2023, 28(9): 4847–4863

    Article  MathSciNet  Google Scholar 

  5. Jin C. Global bounded weak solutions and asymptotic behavior to a chemotaxis-Stokes model with non-Newtonian filtration slow diffusion. J Differential Equations, 2021, 287: 148–184

    Article  MathSciNet  ADS  Google Scholar 

  6. Jin C. Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. Bull London Math Soc, 2018, 50: 598–618

    Article  MathSciNet  Google Scholar 

  7. Jin H. Boundedness of the attraction-repulsion Keller-Segel system. J Math Anal Appl, 2015, 422: 1463–1478

    Article  MathSciNet  Google Scholar 

  8. Jin H, Wang Z. Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model. Math Methods Appl Sci, 2015, 38: 444–457

    Article  MathSciNet  Google Scholar 

  9. Jin H, Wang Z. Boundedness, blow up and critical mass phenomenon in competing chemotaxis. J Differential Equations, 2016, 260: 162–196

    Article  MathSciNet  ADS  Google Scholar 

  10. Jin H, Wang Z. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete Contin Dyn Syst, 2020, 40: 3509–3527

    Article  MathSciNet  Google Scholar 

  11. Jin H, Xiang T. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensional. Discrete Contin Dyn Syst Ser B, 2018, 23: 3071–3085

    MathSciNet  Google Scholar 

  12. Keller E, Segel L. Initiation of slime mold aggregation viewed as an instability. J Theoret Biol, 1970, 26: 399–415

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Li J, Ke Y, Wang Y. Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source. Nonlinear Anal: RWA, 2018, 39: 261–277

    Article  MathSciNet  Google Scholar 

  14. Li X. Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion. Math Methods Appl Sci, 2015, 39: 289–301

    Article  MathSciNet  Google Scholar 

  15. Li X, Xiang Z. On an attraction-repulsion chemotaxis system with a logistic source. IMA J Appl Math, 2016, 81: 165–198

    MathSciNet  Google Scholar 

  16. Li Y. Global boundedness of weak solution in an attraction-repulsion chemotaxis system with p-Laplacian diffusion. Nonlinear Analysis: RWA, 2020, 51: 102933

    MathSciNet  Google Scholar 

  17. Li Y, Lankeit J. Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity, 2015, 29: 1564–1595

    Article  MathSciNet  ADS  Google Scholar 

  18. Li Y, Li Y. Blow-up of nanradial solutions to attraction-repulsion chemomtaxis system in two dimensiona. Nonlinear Anal: RWA, 2016, 30: 170–183

    Article  Google Scholar 

  19. Lin K, Mu C. Global existence and convergence to steady states for an attraction-repulsion chemotaxis system. Nonlinear Anal: RWA, 2016, 31: 630–642

    Article  MathSciNet  Google Scholar 

  20. Lin K, Mu C, Gao Y. Boundedness and blow-up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion. J Differential Equations, 2016, 261: 4524–4572

    Article  MathSciNet  ADS  Google Scholar 

  21. Lin K, Mu C, Wang L. Large-time behavior of an attraction-repulsion chemotaxis system. J Math Anal Appl, 2015, 426: 105–124

    Article  MathSciNet  Google Scholar 

  22. Liu C, Li P. Boundedness and global solvability for a chemotaxis-haptotaxis model with p-Laplacian diffusion. Electronic J Differ Equa, 2020, 2020(16): 1–16

    MathSciNet  CAS  Google Scholar 

  23. Liu C, Li P. Global existence for a chemotaxis-haptotaxis model with p-laplacian. Commun Pure Appl Anal, 2020, 19(3): 1399–1419

    Article  MathSciNet  Google Scholar 

  24. Liu D, Tao Y. Boundedness in a chemotaxis system with nonlinear signal production. Appl Math J Chin Univ Ser B, 2016, 31: 379–388

    Article  MathSciNet  ADS  Google Scholar 

  25. Liu D, Tao Y. Global boundedness in a fully parabolic attraction-repulsion chemotaxis model. Math Methods Appl Sci, 2015, 38: 2537–2546

    Article  MathSciNet  Google Scholar 

  26. Liu J, Cong W. A degenerate p-Laplacian Keller-Segel model. Kinet Relat Models, 2016, 9: 687–714

    Article  MathSciNet  Google Scholar 

  27. Liu P, Shi J, Wang Z. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin Dyn Syst Ser B, 2013, 18(10): 2597–2625

    MathSciNet  Google Scholar 

  28. Nagai T. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl, 2001, 6: 37–55

    MathSciNet  Google Scholar 

  29. Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv Math Sci Appl, 1995, 5: 581–601

    MathSciNet  Google Scholar 

  30. Nagai T. Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. Nonlinear Anal: TMA, 1997, 30: 5381–5388

    Article  MathSciNet  Google Scholar 

  31. Nakaguchi E, Osaki K. Global existence of sountions to a parabolic-parabolic system for chemotaxis with weak degradation. Nonlinear Anal: TMA, 2011, 74: 286–297

    Article  Google Scholar 

  32. Nakaguchi E, Osaki K. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete Contin Dyn Syst Ser B, 2013, 18: 2627–2646

    MathSciNet  Google Scholar 

  33. Nirenberg L. An extended interpolation inequality. Ann Sc Norm Super Pisa, 1966, 20: 733–737

    MathSciNet  Google Scholar 

  34. Osaki K, Yagi A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial Ekvac Ser Int, 2001, 44(3): 441–470

    MathSciNet  Google Scholar 

  35. Ren G, Liu B. Global dynamics for an attraction-repulsion chemotaxis model with logistic source. J Differential Equations, 2020, 268: 4320–4373

    Article  MathSciNet  ADS  Google Scholar 

  36. Ren G, Liu B. Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source. Nonlinear Anal: RWA, 2019, 46: 545–582

    Article  MathSciNet  Google Scholar 

  37. Shi S, Liu Z, Jin H. Boundedness and large time bahavior of an attraction-repulsion chemotaxis model with logistic source. Kinet Relat Models, 2017, 10(3): 855–878

    Article  MathSciNet  Google Scholar 

  38. Tao W, Li Y. Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion. J Differential Equations, 2020, 268(11): 6872–6919

    Article  MathSciNet  ADS  Google Scholar 

  39. Tao W, Li Y. Global weak solutions for the three-dimensional chemotaxis-navier-stokes system with slow p-Laplacian diffusion. Nonlinear Anal: RWA, 2018, 45: 26–52

    Article  MathSciNet  Google Scholar 

  40. Tao Y, Wang Z. Competing effects of attraction vs. repulsion in chemotaxis. Math Models Methods Appl Sci, 2013, 23: 1–36

    Article  MathSciNet  CAS  Google Scholar 

  41. Tian M, He X, Zheng S. Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source. Nonlinear Anal: RWA, 2016, 30: 1–15

    Article  MathSciNet  Google Scholar 

  42. Wang Y. A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source. J Math Anal Appl, 2016, 441: 259–292

    Article  MathSciNet  Google Scholar 

  43. Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248: 2889–2905

    Article  MathSciNet  ADS  Google Scholar 

  44. Winkler M. Finite-time blow-up in the highter-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748–767

    Article  MathSciNet  Google Scholar 

  45. Yagi A. Norm behavior of solutions to the parabolic system of chemotaxis. Math Japonica, 1997, 45: 241–265

    MathSciNet  Google Scholar 

  46. Yu H, Guo Q, Zheng S. Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system. Nonlinear Anal: RWA, 2017, 34: 335–342

    Article  MathSciNet  Google Scholar 

  47. Zhang Q, Li Y. An attraction-repulsion chemotaxis system with logistic source. Z Angew Math Mech, 2016, 96: 570–584

    Article  MathSciNet  Google Scholar 

  48. Zheng P, Mu C, Hu X. Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system. Comput Math Appl, 2016, 72: 2194–2202

    Article  MathSciNet  Google Scholar 

  49. Zhuang M, Wang W, Zheng S. Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production. Nonlinear Anal: RWA, 2019, 47: 473–483

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Jia.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China(12301251,12271232), the Natural Science Foundation of Shandong Province, China (ZR2021QA038) and the Scientific Research Foundation of Linyi University, China (LYDX2020BS014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Z. & Jia, Z. Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source. Acta Math Sci 44, 909–924 (2024). https://doi.org/10.1007/s10473-024-0308-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0308-7

Key words

2020 MR Subject Classification

Navigation