Skip to main content
Log in

A Derivative-Hilbert operator acting on Hardy spaces

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

Let μ be a positive Borel measure on the interval [0, 1). The Hankel matrix \({{\cal H}_\mu} = {({\mu _{n,k}})_{n,k \ge 0}}\) with entries μn,k = μn+k, where μn = [0,1)tndμ(t), induces formally the operator as

${\cal D}{{\cal H}_\mu}(f)(z) = \sum\limits_{n = 0}^\infty {\left({\sum\limits_{k = 0}^\infty {{\mu _{n,k}}{a_k}}} \right)(n + 1){z^n},z \in \mathbb{D}} $

where \(f(z) = \sum\limits_{n = 0}^\infty {{a_n}{z^n}} \) is an analytic function in \(\mathbb{D}\). We characterize the positive Borel measures on [0,1) such that \({\cal D}{{\cal H}_\mu}(f)(z) = \int_{[0,1)} {{{f(t)} \over {{{(1 - tz)}^2}}}{\rm{d}}\mu (t)} \) for all f in the Hardy spaces Hp(0 < p < ∞), and among these we describe those for which \({\cal D}{{\cal H}_\mu}\) is a bounded (resp., compact) operator from Hp (0 < p < ∞) into Hq (q > p and q ≥ 1). We also study the analogous problem in the Hardy spaces Hp(1 ≤ p ≤ 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J, Pommerenke C, Clunie J. On Bloch functions and normal functions. J Reine Angew Math, 1974, 270(1): 12–37

    MathSciNet  MATH  Google Scholar 

  2. Chatzifountas C, Girela D, Peiáez J Á. A generalized Hilbert matrix acting on Hardy spaces. J Math Anal Appl, 2014, 413(1): 154–168

    Article  MathSciNet  MATH  Google Scholar 

  3. Carleson L. Interpolations by bounded analytic functions and the corona problem. Ann of Math, 1962, 76(3): 547–559

    Article  MathSciNet  MATH  Google Scholar 

  4. Cowen C C, MacCluer B D. Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995

    MATH  Google Scholar 

  5. Cwikel M, Kalton N J. Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre. Proc Edinburgh Math Soc, 1995, 38(2): 261–276

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng F, Ouyan C, Deng G. Some questions regarding verification of Carleson measure. Acta Math Sci, 2021, 41B(6): 2136–2148

    Article  MathSciNet  MATH  Google Scholar 

  7. Diamantopoulos E, Siskakis A G. Composition operators and the Hilbert matrix. Studia Math, 2000, 140(2): 191–198

    Article  MathSciNet  MATH  Google Scholar 

  8. Duren P L. Extension of a theorem of Carleson. Bull Amer Math Soc, 1969, 75: 143–146

    Article  MathSciNet  MATH  Google Scholar 

  9. Duren P L. Theory of Hp Spaces. New York: Academic Press, 1970

    MATH  Google Scholar 

  10. Duren P L, Romberg B W, Shields A L. Linear functionals on Hp spaces with 0 < p < 1. Reine Angew Math, 1969, 238(1): 32–60

    MathSciNet  MATH  Google Scholar 

  11. Galanopoulos P, Girela D, Peláez J Á, Siskakis A G. Generalized Hilbert operators. Ann Acad Sci Fenn Math, 2014, 39: 231–258

    Article  MathSciNet  MATH  Google Scholar 

  12. Galanopoulos P, Peláez J Á. A Hankel matrix acting on Hardy and Bergman spaces. Studia Math, 2010, 200(3): 201–220

    Article  MathSciNet  MATH  Google Scholar 

  13. Girela D. Analytic functions of bounded mean oscillation//Complex Function Spaces, University Joensuu Dept Math Rep Ser, vol 4. Joensuu: University Joensuu, 2001: 61–170

    MATH  Google Scholar 

  14. Girela D, Mercháan N. A generalized Hilbert operator acting on conformally invariant spaces. Banach J Math Anal, 2016, 12(2): 374–398

    Article  MathSciNet  Google Scholar 

  15. Gnuschke-Hauschild D, Pommerenke C. On Bloch functions and gap series. J Reine Angew Math, 1986, 367: 172–186

    MathSciNet  MATH  Google Scholar 

  16. Li S, Zhou J. Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Math, 2021, 6: 3305–3318

    Article  MathSciNet  MATH  Google Scholar 

  17. Maccluer B, Zhao R. Vanishing logarithmic Carleson measures. Illinois J Math, 2002, 46(2): 507–518

    Article  MathSciNet  MATH  Google Scholar 

  18. Ye S, Zhou Z. A derivative-Hilbert operator acting on the Bloch space. Complex Anal Oper Theory, 2021, 15(5): 88

    Article  MathSciNet  MATH  Google Scholar 

  19. Ye S, Zhou Z. A derivative-Hilbert operator acting on Bergman spaces. J Math Anal Appl, 2022, 506(1): 125553

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao R. On logarithmic Carleson measures. Acta Sci Math, 2003, 69: 605–618

    MathSciNet  MATH  Google Scholar 

  21. Zhu K. Bloch type spaces of analytic functions. Rocky Mountain J Math, 1993, 23(3): 1143–1177

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu K. Operator Theory in Function Spaces. Surveys Monoge 138. 2nd ed. Providence RI: Amer Math Soc, 2007

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanli Ye.

Ethics declarations

The authors declare no conflict of interest.

Additional information

The research was supported by the Zhejiang Provincial Natural Science Foundation (LY23A010003) and the National Natural Science Foundation of China (11671357).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Feng, G. A Derivative-Hilbert operator acting on Hardy spaces. Acta Math Sci 43, 2398–2412 (2023). https://doi.org/10.1007/s10473-023-0605-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0605-6

Key words

2010 MR Subject Classification

Navigation