Skip to main content
Log in

Iterative Algorithms for System of Variational Inclusions in Hadamard Manifolds

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we consider system of variational inclusions and its several spacial cases, namely, alternating point problems, system of variational inequalities, etc., in the setting of Hadamard manifolds. We propose an iterative algorithm for solving system of variational inclusions and study its convergence analysis. Several special cases of the proposed algorithm and convergence result are also presented. We present application to constraints minimization problems for bifunctions in the setting of Hadamard manifolds. At the end, we illustrate proposed algorithms and convergence analysis by a numerical example. The algorithms and convergence results of this paper either improve or extend known algorithms and convergence results from linear structure to Hadamard manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Homidan S, Ansari Q H, Babu F. Halpern and Mann type algorithms for fixed points and inclusion problems on Hadamard manifolds. Numer Funct Anal Optim, 2019, 40(6): 621–653

    Article  MathSciNet  Google Scholar 

  2. Ansari Q H, Babu F. Proximal point algorithm for inclusion problems in Hadamard manifolds with applications. Optim Lett, 2021, 15(3): 901–921

    Article  MathSciNet  Google Scholar 

  3. Ansari Q H, Babu F. Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds. Optim Lett, 2020, 14(3): 711–727

    Article  MathSciNet  Google Scholar 

  4. Ansari Q H, Babu F, Li X B. Variational inclusion problems in Hadamard manifolds. J Nonlinear Convex Anal, 2018, 19(2): 219–237

    MathSciNet  MATH  Google Scholar 

  5. Ariza-Ruiz D, Lopez-Acedo G, Nicolae A, The asymptotic behavior of the composition of firmly nonexpansive mappings. J Optim Theory Appl, 2015, 167: 409–429

    Article  MathSciNet  Google Scholar 

  6. Bačák M, Computing medians and means in Hadamard spaces. SIAM J Optim, 2014, 24: 1542–1566

    Article  MathSciNet  Google Scholar 

  7. Bauschke H H, Combettes P L, Reich S, The asymptotic behavior of the composition of two resolvents. Nonlinear Anal, 2005, 60: 283–301

    Article  MathSciNet  Google Scholar 

  8. Browder F E, Petryshyn W V, Construction of fixed points of nonlinear in Hilbert space. J Math Anal Appl, 1967, 20: 197–228

    Article  MathSciNet  Google Scholar 

  9. Ceng L C, Wang C Y, Yao J C, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math Meth Oper Res, 2008, 67: 375–390

    Article  MathSciNet  Google Scholar 

  10. da Cruz Neto J X, Ferreira O P, Lucambio P R. Monotone point-to-set vector fields. Balk J Geom Appl, 2000, 5(1): 69–79

    MathSciNet  MATH  Google Scholar 

  11. da Cruz Neto J X, Ferreira O P, Lucambio P R, Németh S Z, Convex-and monotone-transformable mathematical programming problems and a proximal-like point method. J Global Optim, 2006, 35: 53–69

    Article  MathSciNet  Google Scholar 

  12. do Carmo M P. Riemannian Geometry. Boston, Basel, Berlin: Birkhäuser, 1992

    Book  Google Scholar 

  13. Ferreira O P, Oliveira P R, Proximal point algorithm on Riemannian manifolds. Optimization, 2002, 51: 257–270

    Article  MathSciNet  Google Scholar 

  14. Iusem A N, An iterative algorithm for the variational inequality problem. Comput Appl Math, 1994, 13: 103–114

    MathSciNet  MATH  Google Scholar 

  15. Li C, López G, Martín-Márquez V, Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J Lond Math Soc, 2009 79: 663–683

    Article  MathSciNet  Google Scholar 

  16. Li C, López G, Martíín-Máarquez V. Iterative algorithms for nonexpansive mappings on Hadamard manifolds. Taiwanese J Math, 2010, 14(2): 541–559

    MathSciNet  Google Scholar 

  17. Li C, López G, Martín-Márquez V, Resolvent of set-valued monotone vector fields in Hadamard manifolds. Set-valued Anal, 2011 19: 361–383

    Article  MathSciNet  Google Scholar 

  18. Liu L S, Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J Math Anal Appl, 1995, 194: 114–125

    Article  MathSciNet  Google Scholar 

  19. Moudafi A. A three-operator splitting algorithm for null-point problems. Fixed Point Theory, 2020, 21(2): 685–692

    Article  MathSciNet  Google Scholar 

  20. Németh S Z. Monotonicity of the complementary vector field of a nonexpansive map. Acta Math Hungar, 1999, 84(3): 18–197

    Article  MathSciNet  Google Scholar 

  21. Németh S Z, Monotone vector fields. Publ Math Debrecen, 1999, 54: 437–449

    MathSciNet  MATH  Google Scholar 

  22. Passty G B, Ergodic convergence to a zero of the sum of maximal monotone operators. J Math Anal Appl, 1978, 7: 591–597

    Google Scholar 

  23. Rapcsák T. Smooth Nonlinear Optimization in ℝn. Dordrecht: Kluwer Academic Publishers, 1997

    Book  Google Scholar 

  24. Reich S, Strong convergence theorems for resolvents of accretive operators in Banach spaces. J Math Anal Appl, 1980, 75: 287–292

    Article  MathSciNet  Google Scholar 

  25. Sahu D R. Altering points and applications. Nonlinear Stud, 2014, 21(2): 349–365

    MathSciNet  MATH  Google Scholar 

  26. Sahu D R, Ansari Q H, Yao J C, The prox-Tikhonov-like forward-backward method and application. Taiwanese J Math, 2015 19: 481–503

    Article  MathSciNet  Google Scholar 

  27. Sahu D R, Babu F, Sharma S. The S-iterative techniques on Hadamard manifolds and applications. J Appl Numer Optim, 2020, 2(3): 353–371

    Google Scholar 

  28. Sakai T. Riemannian Geometry. Providence, RI: Amer Math Soc, 1996

    Book  Google Scholar 

  29. Sakurai K, Jimba T, Iiduka H. Iterative methods for parallel convex optimization with fixed point constraints. J Nonlinear Var Anal, 2019, 3(2): 115–126

    MATH  Google Scholar 

  30. Tuyen T M, Quy T X, Trang N M. A parallel iterative method for solving a class of variational inequalities in Hilbert spaces. J Nonlinear Var Anal, 2020, 4(3): 357–376

    MATH  Google Scholar 

  31. Udriste C. Convex Functions and Optimization Methods on Riemannian Manifolds. Dordrecht: Kluwer Academic Publishers, 1994

    Book  Google Scholar 

  32. Walter R, On the metric projections onto convex sets in Riemannian spaces. Arch Math, 1974, 25: 91–98

    Article  MathSciNet  Google Scholar 

  33. Zhang C, Chen J, The subgradient extragradient-type algorithms for solving a class of monotone variational inclusion problems. J Appl Numer Optim, 2020, 2: 3

    Google Scholar 

  34. Zhao X P, Sahu D R, Wen C F. Iterative methods for system of variational inclusions involving accretive operators and applications. Fixed Point Theory, 2018, 19(2): 801–822

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamrul Hasan Ansari.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, Q.H., Babu, F. & Sahu, D.R. Iterative Algorithms for System of Variational Inclusions in Hadamard Manifolds. Acta Math Sci 42, 1333–1356 (2022). https://doi.org/10.1007/s10473-022-0405-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0405-4

Key words

2010 MR Subject Classification

Navigation