Skip to main content
Log in

Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We prove the global existence of classical solutions to a fluid-particle interaction model in ℝ3, namely, compressible Navier-Stokes-Smoluchowski equations, when the initial data are close to the stationary state (ρ*, 0, η*) and the external potential satisfies the smallness assumption. Furthermore, optimal decay rates of classical solutions in H3-framework are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranger C, Boudin L, Jabin P E, et al. A modeling of biospray for the upper airways. CEMRACS 2004-mathematics and applications to biology and medicine. ESAIM Proc, 2005, 14: 41–47

    Article  Google Scholar 

  2. Ballew J. Low Mach number limits to the Navier Stokes Smoluchowski system//Hyperbolic Problems: Theory, Numerics, Applications. AIMS Series on Applied Mathematics, 2014, 8: 301–308

    MathSciNet  Google Scholar 

  3. Ballew J. Mathematical Topics in Fluid-Particle Interaction[D]. USA: University of Maryland, 2014

    Google Scholar 

  4. Ballew J, Trivisa K. Weakly dissipative solutions and weak-strong uniqueness for the Navier Stokes Smoluchowski system. Nonlinear Anal, 2013, 91: 1–19

    Article  MathSciNet  Google Scholar 

  5. Berres S, Bürger R, Karlsen K H, et al. Strongly degenerate parabolic hyperbolic systems modeling poly-disperse sedimentation with compression. SIAM J Appl Math, 2003, 64(1): 41–80

    Article  MathSciNet  Google Scholar 

  6. Carrillo J A, Goudon T. Stability and asymptotic analysis of a fluid-particle interaction model. Commun Partial Differ Equ, 2006, 31: 1349–1379

    Article  MathSciNet  Google Scholar 

  7. Carrillo J A, Karper T, Trivisa K. On the dynamics of a fluid-particle interaction model: the bubbling regime. Nonlinear Anal, 2011, 74: 2778–2801

    Article  MathSciNet  Google Scholar 

  8. Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120: 91–129

    Article  MathSciNet  Google Scholar 

  9. Chen Y S, Ding S J, Wang W J. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete Contin Dyn Syst, 2016, 36(10): 5287–5307

    Article  MathSciNet  Google Scholar 

  10. Ding S J, Huang B Y, Lu Y B. Blowup criterion for the compressible fluid-particle interaction model in 3D with vacuum. Acta Mathematica Scientia, 2016, 36B(4): 1030–1048

    Article  MathSciNet  Google Scholar 

  11. Ding S J, Huang B Y, Wen H Y. Global well-posedness of classical solutions to a fluid-particle interaction model in ℝ3. J Differential Equations, 2017, 263(12): 8666–8717

    Article  MathSciNet  Google Scholar 

  12. Fang D Y, Zi R Z, Zhang T. Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime. J Math Phys, 2012, 53: 033706

    Article  MathSciNet  Google Scholar 

  13. Huang B Y, Ding S J, Wen H Y. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete Contin Dyn Syst S, 2016, 9(6): 1717–1752

    Article  MathSciNet  Google Scholar 

  14. Ju N. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Comm Math Phys, 2004, 251: 365–376

    Article  MathSciNet  Google Scholar 

  15. Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3. Commun Math Phys, 1999, 200: 621–659

    Article  MathSciNet  Google Scholar 

  16. Li F C, Yu H J. Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc Roy Soc Edinburgh Sect A, 2011, 141: 109–126

    Article  MathSciNet  Google Scholar 

  17. Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun Math Phys, 1983, 89(4): 445–464

    Article  MathSciNet  Google Scholar 

  18. Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonlin Analysis, 1985, 9: 399–418

    Article  MathSciNet  Google Scholar 

  19. Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Differ Eqns, 2006, 3(3): 561–574

    Article  MathSciNet  Google Scholar 

  20. Vinkovic I, Aguirre C, Simoëns S, et al. Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. Int J Multiph Flow, 2006, 32: 344–364

    Article  Google Scholar 

  21. Williams F A. Combustion Theory. Benjamin Cummings Publ, 1985

  22. Williams F A. Spray combustion and atomization. Phys Fluids, 1958, 1: 541–555

    Article  Google Scholar 

  23. Wang W J. Large time behavior of solutions to the compressible Navier-Stokes equations with potential force. J Math Anal Appl, 2015, 423: 1448–1468

    Article  MathSciNet  Google Scholar 

  24. Wang Y J. Decay of the Navier-Stokes-Poisson equations. J Differential Equations, 2012, 253: 273–297

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyuan Huang.

Additional information

Ding was supported by the National Natural Science Foundation of China (11371152, 11771155, 11571117 and 11871005), and by the Natural Science Foundation of Guangdong Province (2017A030313003). Huang was supported by the Natural Science Foundation of Guangdong Province (2018A030310008), and by the Doctoral Scientific Research Foundation of Hanshan Normal University (QD20171002) and the Educational Commission of Guangdong Province (2017KTSCX124).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Huang, B. & Li, Q. Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model. Acta Math Sci 39, 1525–1537 (2019). https://doi.org/10.1007/s10473-019-0605-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0605-8

Key words

2010 MR Subject Classification

Navigation