Skip to main content
Log in

Probabilistic optimal solution assessment for DCOPs

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Distributed Constraint Optimization Problems (DCOPs) are widely used in Multi-Agent Systems for coordination and scheduling. The present paper proposes a heuristic algorithm that uses probabilistic assessment of the optimal solution in order to quickly find a solution that is not far from the optimal one. The heuristic assessment uses two passes by the agents to produce a high-quality solution. Extensive performance evaluation demonstrates that the solution of the proposed probabilistic assessment algorithm is indeed very close to the optimum, on smaller problems where this could be measured. In larger set-ups, the quality of the solution is demonstrated relatively to standard incomplete search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without adding links: a new member in the ABT Family. Artif. Intell. 161(1-2), 7–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clusel, M., Bertin, E.: Global fluctuations in physical systems: a subtle interplay between sum and extreme value statistics. Int. J. Mod. Phys. B 22(20), 3311–3368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fabiunke, M.: Parallel Distributed Constraint Satisfaction. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 99), pp 1585–1591, Las Vegas (1999)

  5. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm. In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS-08), pp 639–646 (2008)

  6. Fitzpatrick, S., Meertens, L.: An Experimental Assessment of Stochastic, Anytime, Descentralized, Soft Colourer for Sparse Graphs. In: Symposium on Stohastic Algorithms: Foundations and Applications, pp 49–64 (2001)

  7. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding for distributed cops. J. Artif. Intell. Res. (JAIR) 34, 61–88 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Hilhorst, H.J.: Central limit theorems for correlated variables: some critical remarks. Brazilian J. of physics 39(2A), 371–379 (2009)

    Article  Google Scholar 

  9. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc consistency. Artif. Intell. 159(1–2), 1–26 (2004). https://doi.org/10.1016/j.artint.2004.05.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to the real world: efficient complete solutions for distributed event scheduling. In: 3rd International Joint Conference on Agents and Multi Agent System AAMAS-2004 (2004)

  11. Meisels, A.: Distributed Search by Constrained Agents. Springer, Berlin (2008)

    MATH  Google Scholar 

  12. Meisels, A., Zivan, R.: Asynchronous forward-checking for distributed csps. Constraints 12(1), 131–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraints optimization with quality guarantees. Artif. Intell. 161(1-2), 149–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Netzer, A., Meisels, A., Grubshtein, A.: Concurrent forward rounding for DCOPs. In: Proceedings of the 12th International Workshop Dist. Const. Reas. (DCR-10) (AAMAS-10). Toronto, Canada (2010)

  15. NGUYEN, D.T., YEOH, W., LAU, H.C.: Distributed Gibbs: a Memory-Bounded Sampling-Based Dcop Algorithm. In: Proceedings of the 12th International Conference Autonomous Agents and Multiagent Systems (AAMAS-2013), pp. 167–176. Saint Paul, Minnesota (2013)

  16. Pearce, J., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: International Joint Conference on Artificial Intelligence (IJCAI), 2007 (2007)

  17. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. Syst. Sci. 37(2), 130–143 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.: Bounded approximate decentralised coordination via the max-sum algorithm. Artificial Intelligencex (2010)

  19. Stephens, M.: Edf statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69, 730–737 (1974)

    Article  Google Scholar 

  20. Ushakov, N. Conditional mathematical expectation. http://www.encyclopediaofmath.org/index.php?title=Conditional_mathematical_expectation&oldid=15801

  21. Yeoh, W., Felner, A., Koenig, S.: Bnb-ADOPT: an asynchronous branch-and-round DCOP algorithm. J. Artif. Intell. Res. (JAIR) 38, 85–133 (2010)

    MATH  Google Scholar 

  22. Yokoo, M.: Algorithms for distributed constraint satisfaction problems: a review. Autonomous Agents & Multi-Agent Sys. 3, 198–212 (2000)

    Google Scholar 

  23. Yokoo, M., Hirayama, K.: Distributed Constraint Satisfaction Problems. Springer, Berlin (2000)

    MATH  Google Scholar 

  24. Zhang, W., Xing, Z., Wang, G., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparishon and applications to constraints optimization problems in sensor networks. Artif. Intell. 161(1-2), 55–88 (2005)

    Article  MATH  Google Scholar 

  25. Zivan, R.: Anytime Local Search for Distributed Constraint Optimization. In: Proceedings of the 7th International Conference Autonomous Agents Multi Agents Systems (AAMAS-08), pp 1449–1452 (2008)

  26. Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. Auton. Agents and Multi Agents Sys., 1–43 (2017)

  27. Zivan, R., Peled, H.: Max/Min Constraint Optimization via Value Propagation on an Alternating Dag. In: Proceedings of the 11th International Conference on Autonomous Agents Multi Agent Systems (AAMAS 2012), pp 265–272 (2012)

Download references

Acknowledgements

The authors acknowledge fruitful discussions with Yochai Twitto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Berend.

Additional information

Supported by the Lynn and William Frankel center for Computer Sciences, the Paul Ivanier Center for Robotics and Production Management, and the Milken Families Foundation Chair in Mathematics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berend, D., Meisels, A. & Peri, O. Probabilistic optimal solution assessment for DCOPs. Ann Math Artif Intell 83, 99–119 (2018). https://doi.org/10.1007/s10472-018-9582-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9582-1

Keywords

Mathematics Subject Classification (2010)

Navigation