Skip to main content
Log in

Why-provenance information for RDF, rules, and negation

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The provenance (i.e., origins) of derived information on the Web is crucial in many applications to allow information quality assessment, trust judgments, accountability, as well as understanding the temporal and spatial status of the information. On the other hand, the inclusion of negative information in knowledge representation both in the form of negation-as-failure and explicit negation is also important to allow various forms of reasoning, provided that weakly negated information is associated with the sources (contexts) in which it holds. In this work, we consider collections of g-RDF ontologies, distributed over the web, along with a set of conflict statements expressing that information within a pair of g-RDF ontologies cannot be combined together for deriving new information. A g-RDF ontology is the combination of (i) a g-RDF graph G (i.e., a set of positive and strongly negated RDF triples, called g-RDF triples) and (ii) a g-RDF program P containing derivation rules with possibly both explicit and scoped weak negation. Information can be inferred through the g-RDF graphs or the derivation rules of the g-RDF ontologies, or through the RDFS derivation rules. We associate each derived grounded g-RDF triple [¬] p(s, o) with the set of names S of the g-RDF ontologies that contributed to its derivation. To achieve this, we define the provenance stable models of a g-RDF ontology collection. We show that our provenance g-RDF semantics faithfully extends RDFS semantics. Finally, we provide an algorithm based on Answer Set Programming that computes all provenance stable models of a g-RDF ontology collection and provides the answer to various kinds of queries. Various complexity results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In: 13th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS-2011), pp. 153–164 (2011)

  2. Analyti, A., Antoniou, G., Damasio, C.V.: A formal theory for modular ERDF ontologies. In: 3rd International Conference Web Reasoning and Rule Systems (RR 2009), pp. 212–226 (2009)

  3. Analyti, A., Antoniou, G., Damásio, C.V.: Computability and Complexity Issues of ERDF. Technical Report, FORTH-ICS, submitted for publication. Available at http://www.ics.forth.gr/analyti/Papers_2/ERDF_Complexity.pdf (2010)

  4. Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Negation and negative information in the w3c resource description framework. Ann. Math. Comput. Teleinformatics (AMCT). 1(2), 25–34 (2004)

    Google Scholar 

  5. Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Extended RDF as a semantic foundation of rule markup languages. J. Artif. Intell. Res. (JAIR). 32, 37–94 (2008)

    MATH  Google Scholar 

  6. Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: PROV-O: the PROV ontology. In: Lebo, T., Sahoo, S., McGuinness, D. (eds.) W3C Working Draft. Consulted http://www.w3.org/TR/2012/WD-prov-o-20120724/ (2012)

  7. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.: RIF Core Dialect, 2nd edn. W3C Recommendation. Latest version available at http://www.w3.org/TR/rif-core/ (2013). Accessed 5 Feb 2013

  8. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: 22nd AAAI Conference on Artificial Intelligence (AAAI-2007), pp. 385–390 (2007)

  9. Buneman, P., Khanna, S., Tan, W.C.: Why and where: a characterization of data provenance. In: 8th International Conference on Database Theory (ICDT-2001), pp. 316–330 (2001)

  10. Buneman, P., Kostylev, E.V.: Annotation algebras for RDFS. In: 2nd International Workshop on the Role of Semantic Web in Provenance Management (SWPM-2010), pp. 316–330 (2010)

  11. Carroll, J.J., Bizer, C., Hayes, P.J., Sticklerm, P.: Named graphs. J. Web Semant. 3(4) (2005)

  12. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs, provenance and trust. In: 14th International Conference on World Wide Web (WWW-2005), pp. 613–622 (2005)

  13. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J. ACM. 43(1) (1996)

  14. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and where. Found. Trends Database. 1(4), 379–474 (2009)

    Article  Google Scholar 

  15. Ciccarese, P., Wu, E., Wong, G., Ocana, M., Kinoshita, J., Ruttenberg, A., Clark, T.: The SWAN biomedical discourse ontology. J. Biomed. Inform. 41(5), 739–751 (2008)

    Article  Google Scholar 

  16. Cui, Y.: Lineage Tracing in Data Warehouses. Ph.D., Stanford InfoLab (2001)

  17. Damásio, C.V., Analyti, A., Antoniou, G.: Provenance for SPARQL queries. In: 11th International Semantic Web Conference (ISWC-2012). To appear (2012)

  18. Damásio, C.V., Analyti, A., Antoniou, G.: Justifications for logic programming. In: 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-2013), pp. 530–542 (2013)

  19. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  20. de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of normative RDF. In: OWL: Experiences and Directions Workshop (OWLED-2005). Ireland (2005)

  21. Decker, S., Sintek, M., Nejdl, W.: The Model-Theoretic Semantics of TRIPLE. Technical Report (2002)

  22. Ding, L., Finin, T., Peng, Y., Joshi, A., da Silva, P.P., McGuinness, D.L.: Tracking RDF Graph Provenance using RDF Molecules. Technical Report, UMBC TR-CS-05-06 (2005)

  23. Dividino, R.Q., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust, uncertainty and other meta knowledge in RDF. J. Web Semant. 7(3) (2009)

  24. Dong, X.L., Naumann, F.: Data fusion - resolving data conflicts for integration. Proc. VLDB Endowment. 2(2), 1654–1655 (2009)

    Google Scholar 

  25. Eiter, T., Faber,W., Fink, M.,Woltran, S.: Complexity results for answer set programming with bounded predicate arities and implications. Ann. Math. Artif. Intell. 51(2–4) (2007)

  26. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring RDF triples to capture provenance. In: 8th International Semantic Web Conference (ISWC-2009), pp. 196–212 (2009)

  27. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: 20th International Joint Conference on Artificial Intelligence (IJCAI-2007), pp. 386–392 (2007)

  28. Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic structures for capturing the provenance of SPARQL queries. In: 16th International Conference on Database Theory (ICDT-2013) (2013)

  29. Geerts, F., Poggi, A.: On database query languages for K-relations. J. Appl. Log. 8(2), 173–185 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM. 38(3), 620–650 (1991)

    MATH  Google Scholar 

  31. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K.A. (eds.) 5th International Conference on Logic Programming, pp. 1070–1080. MIT Press (1988)

  32. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: 7th International Conference on Logic Programming, pp. 579–597 (1990)

  33. Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable differences. Theor. Comput. Syst. 49(2), 460–488 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-2007), pp. 31–40 (2007)

  35. Guha, R.V., McCool, R., Fikes, R.: Contexts for the semantic web. In: 3rd International Semantic Web Conference (ISWC-2004), pp. 32–46 (2004)

  36. Hartig, O.: Provenance information in the web of data. In: WWW2008 Workshop on Linked Data on the Web (LDOW-2009) (2009)

  37. Hartig, O., Zhao, J.: Provenance Vocabulary Core Ontology Specification. Latest version available at http://trdf.sourceforge.net/provenance/ns.html (2012). Accessed 14 March 2012

  38. Hartig, O., Zhao, J.: Publishing and consuming provenance metadata on the web of linked data. In: 3rd International Provenance and Annotation Workshop (IPAW-2010), pp. 78–90 (2010)

  39. Hayes, P., Semantics, R.D.F.: W3C Recommendation. Available at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ (2004). Accessed 10 Feb 2004

  40. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool (2011)

  41. Herre, H., Jaspars, J.,Wagner, G.: Partial logics with two kinds of negation as a foundation of knowledge-based reasoning. In: Gabbay, D.M., Wansing, H. (eds.) What is Negation? Kluwer Academic Publishers (1999)

  42. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD-2010), pp. 951–962 (2010)

  43. Kifer, M., Boley, H.: RIF Overview, 2nd edn. W3C Working Group Note 5. Latest version available at http://www.w3.org/TR/rif-overview/ (2013)

  44. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. J. ACM. 42(4), 741–843 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation. Available at http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (2004). Accessed 10 Feb 2004

  46. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  47. Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract constraint atoms: the role of computations. Artif. Intell. 174(3–4), 295–315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer-Verlag (1987)

  49. Lloyd, J.W., Topor, R.W.: Making prolog more expressive. J. Log. Program. 1(3), 225–240 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  50. MacGregor, R.M., Ko, I.-Y.: Representing contextualized data using semantic web tools. In: 1st International Workshop on Practical and Scalable Semantic Systems (PSSS-2003) (2003)

  51. Muñoz, S., Pe´rez, J., Gutie´rrez, C.: Minimal deductive systems for RDF. In: 4th European Semantic Web Conference (ESWC 2007), pp. 53–67 (2007)

  52. Niemela¨, I., Simons, P.: Smodels - an implementation of the stable model and well-founded semantics for normal LP. In: 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-1997), pp. 421–430 (1997)

  53. Paschke, A., Morgenstern, L., Hirtle, D., Ginsberg, A., Patranjan, P.-L., McCabe, F.: RIF Use Cases and Requirements, 2nd edn. W3C Working Group Note. Latest version available at http://www.w3.org/TR/rif-ucr/ (2013)

  54. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In: 3rd European Semantic Web Conference (ESWC-2006), pp. 332–347 (2006)

  55. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation. Available at http://www.w3.org/TR/rdf-sparql-query/ (2008). Accessed 15 Jan 2008

  56. Ram, S., Liu, J.: Understanding the semantics of data provenance to support active conceptual modeling. In: 1st International ACM-L Workshop on Active Conceptual Modeling of Learning (ACM-L-2006), pp. 17–29 (2006)

  57. Ross, K.A.: On negation in HiLog. J. Log. Program. 18(1), 27–53 (1994)

    Article  MATH  Google Scholar 

  58. Sagonas, K.F., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine. In: Snodgrass, R.T., Winslett, M. (eds.) Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, pp. 442–453. ACM Press. Available at http://xsb.sourceforge.net/ (1994)

  59. Sintek, M., Decker, S.: TRIPLE - a query, inference, and transformation language for the semantic web. In: 1st International Semantic Web Conference (ISWC-2002), pp. 364–378. Springer-Verlag (2002)

  60. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming. Theory Pract. Log. Program. (TPLP). 12(1–2), 157–187 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  61. ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema and a semantic extension involving the owl vocabulary. J. Web Semant. 3(2–3), 79–115 (2005)

    Article  Google Scholar 

  62. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information providers on the web. In: 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2007), pp. 1048–1052 (2007)

  63. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for representing, reasoning and querying with annotated semantic web data. J. Web Semant. 11, 72–95 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Analyti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Analyti, A., Damásio, C.V., Antoniou, G. et al. Why-provenance information for RDF, rules, and negation. Ann Math Artif Intell 70, 221–277 (2014). https://doi.org/10.1007/s10472-013-9396-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9396-0

Keywords

Mathematics Subject Classifications (2010)

Navigation