Skip to main content
Log in

Linearly ordered semigroups for fuzzy set theory

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The fuzzy set theory initiated by Zadeh (Information Control 8:338–353, 1965) was based on the real unit interval [0,1] for support of membership functions with the natural product for intersection operation. This paper proposes to extend this definition by using the more general linearly ordered semigroup structure. As Moisil (Essais sur les Logiques non Chrysippiennes. Académie des Sciences de Roumanie, Bucarest, 1972, p. 162) proposed to define Lukasiewicz logics on an abelian ordered group for truth values set, we give a simple negative answer to the question on the possibility to build a Many-valued logic on a finite abelian ordered group. In a constructive way characteristic properties are step by step deduced from the corresponding set theory to the semigroup order structure. Some results of Clifford on topological semigroups (Clifford, A.H., Proc. Amer. Math. Soc. 9:682–687, 1958; Clifford, A.H., Trans. Amer. Math. Soc. 88:80–98, 1958), Paalman de Miranda work on I-semigroups (Paalman de Miranda, A.B., Topological Semigroups. Mathematical Centre Tracts, Amsterdam, 1964) and Schweitzer, Sklar on T-norms (Schweizer, B., Sklar, A., Publ. Math. Debrecen 10:69–81, 1963; Schweizer, B., Sklar, A., Pacific J. Math. 10:313–334, 1960; Schweizer, B., Sklar, A., Publ. Math. Debrecen 8:169–186, 1961) are revisited in this framework. As a simple consequence of Faucett theorems (Proc. Amer. Math. Soc. 6:741–747, 1955), we prove how canonical properties from the fuzzy set theory point of view lead to the Zadeh choice thus giving another proof of the representation theorem of T-norms. This structural approach shall give a new perspective to tackle the question of G. Moisil about the definition of discrete Many-valued logics as approximation of fuzzy continuous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clifford, A.H.: Ordered commutative semigroups of the second kind. Proc. Amer. Math. Soc. 9, 682–687 (1958)

    Article  MATH  Google Scholar 

  2. Clifford, A.H.: Connected ordered topological semigroups with idempotent endpoints. I. Trans. Amer. Math. Soc. 88, 80–98 (1958)

    Article  MATH  Google Scholar 

  3. Faucett, W.M.: Compact semigroups irreducibly connected between two idempotents. Proc. Amer. Math. Soc. 6, 741–747 (1955)

    Article  MATH  Google Scholar 

  4. Fuchs, L.: Partially Ordered Algebraic Structures. Pergamon, Oxford (1963)

    Google Scholar 

  5. Georgescu, G., Iorgulescu, A., Rudeanu, S.: Grigore C. Moisil (1906–1973) and his School in Algebraic Logic. IJCCC 1(1), 81–99 (2006) (on the web)

    Google Scholar 

  6. Hájek, P.: Basic Fuzzy Logic and BL-algebras. TR.V736, ICS, Ac. of Sciences of the Czech Republic (1996)

  7. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer (1998)

  8. Hájek, P., et al.: Complexity of t-tautologies. Ann. Pure Appl. Logic 113, 3–11 (2002)

    MATH  Google Scholar 

  9. Hofmann, K.H., Lawson, J.D.: Linearly ordered semigroups: historic origins and A.H. Clifford’s Influence. In: Hofmann, K.H., Mislove, M.W. (eds.) Semigroup theory and its applications. London Math. Soc. Lecture Notes 231, 15–39 (1996)

  10. Moisil, Gr.C.: Essais sur les Logiques non Chrysippiennes. Académie des Sciences de Roumanie, Bucarest (1972)

  11. Paalman de Miranda, A.B.: Topological Semigroups. Mathematical Centre Tracts, Amsterdam. (http://www.math.buffalo.edu/mad/PEEPS/paalman_aida.html) (1964)

  12. Pin, J.E.: Finite Semigroups as categories, ordered semigroups or compact semigroups. Semigroup Forum, Clifford Conference Tulane (1994)

  13. Ponasse, D.: Séminaire de Mathématiques Floues. Polycopiés, Vol. I et II , Université de Lyon I, (1978, 1979)

  14. Ribenboïm, P.: Théorie des Groupes Ordonnés. University Press, Bahia Blanca, Argentina (1959)

    Google Scholar 

  15. Ruspini, E., Bonissone, P., Pedrycz, W. (eds.) Handbook of fuzzy computation. Institute of Physics Publ., London (1998)

    MATH  Google Scholar 

  16. Rutherford, D.E.: Introduction to Lattice Theory. Oliver & Boyd Publ. (1965)

  17. Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10, 69–81 (1963)

    Google Scholar 

  18. Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334 (1960)

    MATH  Google Scholar 

  19. Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math. Debrecen 8, 169–186 (1961)

    MATH  Google Scholar 

  20. Turunen, E.: Mathematics Behind Fuzzy Logic. Advances in Soft Computing, Physica Verlag, Springer (1999)

    Google Scholar 

  21. Wallace, A.D.: The structure of topological semigroups. Bul. AMS 61, 95–112 (1955)

    MATH  Google Scholar 

  22. Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, D. Linearly ordered semigroups for fuzzy set theory. Ann Math Artif Intell 49, 207–220 (2007). https://doi.org/10.1007/s10472-007-9060-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-007-9060-7

Keywords

Mathematics Subject Classifications (2000)

Navigation